1. Kleinian singularities

Problem 1.1. Let G be a finite subgroup of $SO_3(\mathbb{R})$. Consider its action on the unit sphere. Show that any non-unit element of G fixes a unique pair of opposite points and that the stabilizer of each point P is cyclic of some order, say, n_P. Choose representatives P_1, \ldots, P_k of orbits with non-trivial stabilizers, one in each orbit. Show that

$$2\left(1 - \frac{1}{n_1}
ight) = \sum_{i=1}^{k} \left(1 - \frac{1}{n_{P_i}}\right).$$

Use this to show that the finite subgroups of $SO_3(\mathbb{R})$ are precisely the following:

1) The cyclic group of order n – generated by a rotation by the angle of $2\pi/n$.
2) The dihedral group of order $2n$ with $n \geq 2$: the group of rotational symmetries of a regular n-gon on the plane inside of the 3D space (a regular 2-gon = a segment).
3) The group of rotational symmetries of the regular tetrahedron isomorphic to the alternating group A_4.
4) The group of rotational symmetries of the regular cube/octahedron isomorphic to the symmetric group S_4.
5) The group of rotational symmetries of the regular dodecahedron/icosahedron isomorphic to A_5.

Problem 1.2. Use the previous problem to deduce that the complete list of finite subgroups $SL_2(\mathbb{C})$ up to conjugacy is as follows.

(A_r) The cyclic group of order $r + 1$, i.e., $\left\{ \begin{pmatrix} \epsilon & 0 \\ 0 & \epsilon^{-1} \end{pmatrix} | \epsilon^{r+1} = 1 \right\}$.

(D_r) The dihedral group of order $4(r - 2), r \geq 4$: $\left\{ \begin{pmatrix} \epsilon & 0 \\ 0 & \epsilon^{-1} \end{pmatrix}, \begin{pmatrix} 0 & \epsilon \\ -\epsilon^{-1} & 0 \end{pmatrix} | \epsilon^{2(r-2)} = 1 \right\}$.

(E_6) The double cover of $A_4 \subset SO_3(\mathbb{R})$.

(E_7) The double cover of $S_4 \subset SO_3(\mathbb{R})$.

(E_8) The double cover of $A_5 \subset SO_3(\mathbb{R})$.

Problem 1.3. Compute the McKay graph for $\Gamma \subset SL_2(\mathbb{C})$ of type D_r.

Problem 1.4. This problem discusses the Kleinian group of type E_6.

1) We start with a construction. Take the group Q_8 of unit quaternions. It has elements $\{\pm 1, \pm i, \pm j, \pm k\}$. Show that the cyclic group \mathbb{Z}_3 acts on Q_8 by automorphisms in such a way that the generator ω acts as follows: $\omega(-1) = -1, \omega(i) = j, \omega(j) = k, \omega(k) = i$. Embed the semi-direct product $\Gamma := \mathbb{Z}_3 \ltimes Q_8$ into $SL_2(\mathbb{C})$. Further, show that $\Gamma/\{\pm 1\} \cong A_4$.

2) Show that Γ has 3 one-dimensional, 3 two-dimensional and 1 three-dimensional irreducible representations.

3) Compute the McKay graph for Γ.

Problem 1.5. Show that for $\Gamma \subset SL_2(\mathbb{C})$ of type D_r, we have $\mathbb{C}[x, y]^{\Gamma} / \cong \mathbb{C}[x_1, x_2, x_3] / (x_1^{-r+1} + x_1 x_2^2 + x_3^2)$.