REPRESENTATION THEORY, PROBLEM SET 2

IVAN LOSEV

The deadline for submitting the solutions is Oct 19. The solutions are to be submitted electronically (scanned hand-written solutions are fine). E-mail i.loseu@neu.edu.

There are five problems with total number of points equal to 30 . The maximal number of points you get for this problem set is 20 . Everything above 20 does not count. Partial credit is given.

1) Additivity of $x \mapsto x^{p}-x^{[p]}$. Let \mathbb{F} be an algebraically closed field of characteristic p. Let $\mathfrak{g}=\mathfrak{g l}_{n}(\mathbb{F})$. Consider the map $\iota: \mathfrak{g} \rightarrow U(\mathfrak{g})$ taking x to $x^{p}-x^{[p]}$.
2) Show that there is a unique homomorphism $\Delta: U(\mathfrak{g}) \rightarrow U(\mathfrak{g}) \otimes U(\mathfrak{g})$ that maps $x \in \mathfrak{g}$ to $x \otimes 1+1 \otimes x \in U(\mathfrak{g}) \otimes U(\mathfrak{g})$. It is known as the coproduct (1 pt).
3) An element $u \in U(\mathfrak{g})$ is called primitive if $\Delta(u)=u \otimes 1+1 \otimes u$ (in particular, $\mathfrak{g} \subset U(\mathfrak{g})$ consists of primitive elements). Show that x^{p} is primitive $(1 \mathrm{pt})$.
4) Let us write $U(\mathfrak{g})^{\leqslant m}$ for the span of monomials of degree $\leqslant m$. Show that all primitive elements in $U(\mathfrak{g})^{\leqslant p-1}$ are contained in \mathfrak{g} (3pts).
5) Deduce that ι is additive (2pts).
6) Classification of finite dimensional irreducible $\mathfrak{s l}_{2}(\mathbb{F})$-modules. Prove Theorem 1.5 from Lecture 4 ($6 \mathrm{pts}-2 \mathrm{pts}$ for each of the three cases).
7) Highest weight vectors are B-semiinvariant. Let V be a rational representation of $\mathrm{SL}_{2}(\mathbb{F})$ with highest weight n. Prove that $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right) v=v$ for any $v \in V_{n}, x \in \mathbb{F}(4 \mathrm{pts})$.
8) Tensor products and dAHA. Let M be a module over the Lie algebra $\mathfrak{g}=\mathfrak{g l}_{n}$ and $V=\mathbb{C}^{n}$. Our goal in this problem is to produce an action of the degenerate affine Hecke algebra $\mathcal{H}(d)$ on the \mathfrak{g}-module $M \otimes V^{\otimes d}$ by \mathfrak{g}-linear endomorphisms.
9) Let M^{\prime} be a \mathfrak{g}-module. Define the endomorphism $X_{M^{\prime}}$ of $M^{\prime} \otimes V$ by $x_{M^{\prime}}(m \otimes v)=$ $\sum_{i, j=1}^{n} E_{i j} m \otimes E_{j i} v$. Show that this endomorphism is \mathfrak{g}-linear (2pts).
10) Define the endomorphism $x_{i}, i=1, \ldots, d$, of $M \otimes V^{\otimes d}$ as

$$
x_{M \otimes V^{\otimes i-1}} \otimes \mathrm{id}^{\otimes d-i}
$$

(so that the first factor acts on $M \otimes V^{\otimes i}$). Further, consider the endomorphism t_{i} of $M \otimes V^{\otimes d}$ that permutes the i th and $i+1$ th copies of V, here $i=1, \ldots, d-1$. Show that $X_{i} \mapsto x_{i}, T_{i} \mapsto t_{i}$ defines a representation of $\mathcal{H}(d)$ in $M \otimes V^{\otimes d}$ (2pts).
5) Affine Lie algebra $\hat{\mathfrak{s}}_{n}$. Here we produce an example of a Kac-Moody algebra $\mathfrak{g}(A)$ with a degenerate matrix A. We take the Dynkin diagram that is a single cycle. The corresponding Cartan matrix is $\left(\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right)$ if $n=2$ and is given by $\left(a_{i j}\right)_{i, j=1}^{n}$, where $a_{i i}=$ $2, a_{i, i+1}=a_{i+1, i}=a_{1, n}=a_{n, 1}=-1$ and $a_{i j}=0$ else.

1) Consider the space $\mathfrak{g}=\mathfrak{s l}_{n}\left[t^{ \pm 1}\right] \oplus \mathbb{C} c$, where the commutator is given by $\left[x \otimes t^{k}, y \otimes t^{\ell}\right]=$ $[x, y] \otimes t^{k+\ell}+k \delta_{k+\ell, 0} \operatorname{tr}(x y) c$, for $x, y \in \mathfrak{s l}_{n}$, where $\delta_{k+\ell, 0}$ is the Kronecker symbol, and $\left[c, x \otimes t^{\ell}\right]=0$. Show that this space is a Lie algebra, it is denoted by $\hat{\mathfrak{s}}_{n}(1 \mathrm{pt})$.
2) Let \mathfrak{h} be the subalgebra of diagonal matrices in $\mathfrak{s l}_{n}$. Set $\mathfrak{h}=\mathfrak{h} \oplus c$. Define the elements $e_{i}, h_{i}, f_{i}, i=0, \ldots, n-1$ as follows: $e_{i}:=E_{i, i+1}$ if $i=1, \ldots, n-1$, and $e_{0}:=t E_{n, 1}$; $h_{i}:=E_{i i}-E_{i+1, i+1}$ if $i=1, \ldots, n-1$, and $h_{0}:=E_{n, n}-E_{1,1}+c ; f_{i}:=E_{i+1, i}$ if $i=1, \ldots, n-1$, and $f_{0}:=t^{-1} E_{1, n}$. Show that the elements e_{i}, h_{i}, f_{i} satisfy the relations of the generators of $\mathfrak{g}(A)$. This yields an epimorphism $\mathfrak{g}(A) \rightarrow \mathfrak{g}$ (2pts).
3) Show that the Weyl group $W(A)$ of $\mathfrak{g}(A)$ is the semidirect product $S_{n} \ltimes\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \sum x_{i}=\right.$ $0\}$ (2pts).
4) Compute the root system of $\mathfrak{g}(A)(2 \mathrm{pts})$.
5^{*}) Show that the epimorphism $\mathfrak{g}(A) \rightarrow \mathfrak{g}$ is an isomorphism (2pts).
