
LECTURE 19: KAC-MOODY ALGEBRA ACTIONS ON CATEGORIES, I

IVAN LOSEV

1. Introduction

We have started this class by studying the representation theory of the symmetric group
Sn over the complex numbers. We finish by giving a brief introduction to the representation
theory of Sn over a field F of positive characteristic p. We will also establish a connection be-
tween the representations of ŝlp and those of FSn. This connection was one of motivations to
consider Kac-Moody algebra actions on categories. We would like to point out that while the
representation theory of Sn in characteristic 0 is a classical and very well understood subject
(all representations are completely reducible, the irreducible ones are classified by the Young
diagrams, and character formulas are known in some way, at least), the representation theory
in characteristic p is very complicated (representations are no longer completely reducible,
and, although the classification of the irreducible representations is known, currently, there
is not even a conjecture on their characters).

1.1. Kac-Moody algebras and their representations. Let us give a reminder regarding
Kac-Moody algebras. We are interested only in symmetric Kac-Moody algebras. Those are
associated to unoriented graphs I without loops. From I we can define its Cartan matrix
A = (aij)i,j∈I by aii = 2 and aij = −nij, where nij is the number of edges between i and
j. Then we can define the Kac-Moody algebra g(I) by generators ei, hi, fi, i ∈ I, and the
following relations:

(R1) [hi, hj] = 0, [hi, ej] = aijej, [hi, fj] = −aijfj.
(R2) [ei, fj] = δijhj.
(R3) ad(ei)

1−aijej = ad(fi)
1−aijfj = 0.

Example 1.1. First, let us recall that, if I is a Dynkin diagram of type Aℓ, then g(I) = slℓ+1.
We will need an infinite version of this, the algebra sl∞ that consists of infinite (in both
directions) matrices with finitely many nonzero entries and trace 0. It corresponds to the
graph I, where the vertices are the integers and we connect vertices whose difference is ±1.

Now let I be a cycle with ℓ vertices. We can view vertices as elements of Z/ℓZ connected
if the difference is ±1 (for ℓ = 2 we have two edges). The corresponding Kac-Moody

algebra is ŝlℓ. It can be defined as ŝlℓ = slℓ ⊗ C[t±1] ⊕ Cc with commutation relations
[x⊗ tp, y⊗ tq] = [x, y]⊗ tp+q+pδp+q,0 tr(xy)c, [c, x⊗ tp] = 0. Note that hi = Eii−Ei+1,i+1, i =
1, . . . , ℓ − 1, h0 = c + Eℓℓ − E11. We have a Cartan subalgebra h := Span(hi|i ∈ I) ⊂ g(I),
the elements hi form a basis in h.

Often one considers a slightly bigger algebra, s̃lℓ = ŝlℓ⊕Cd, where the additional commu-
tation relations are [d, c] = 0, [d, x⊗ tk] = kx⊗ tk. In this case, one includes d as one more
basis element in h.

To give a representation of g(I) in a vector space V , we need to equip V with operators
ei, fi, hi satisfying the relations above. We only care about so called weight representations.
We say that V is a weight representation if V =

⊕
µ∈h∗ Vµ, where Vµ = {v ∈ V |xv =

1
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⟨µ, x⟩v, ∀x ∈ h}. The relations (R1) are equivalent to eiVµ ⊂ Vµ+αi
, fiVµ ⊂ Vµ−αi

, where
αi ∈ h∗ are the simple roots defined by [x, ei] = ⟨αi, x⟩ei, ∀x ∈ h.

1.2. Actions on categories. Now let us discuss what one should mean by an action of
g(I) on a category. We are going to work with abelian categories C that are linear over some
field F and where all objects have finite length. FSn -mod is an example of such a category.
To C we can assign its complexified Grothendieck group [C] := C ⊗Z K0(C). For an exact
functor F : C → C, we get a linear map [F ] : [C] → [C], [M ] 7→ [FM ].

So here is a rough idea of what an action of g(I) on C should mean. We want a collection
of exact functors, Ei, Fi : C → C and a weight decomposition C =

⊕
µ∈h∗ Cµ such that

ei := [Ei], fi := [Fi] and [C] =
⊕

µ[Cµ] gives a weight representation of g(I). This occurs in
many examples but is not powerful enough to produce an interesting theory. A crucial idea
due to Chuang and Rouquier was to additionally include some functor morphisms that are
also present in examples.

The category C we are interested in is C =
⊕

n>0 FSn -mod. We will see that if charF = 0,
then C carries a categorical action of sl∞ (relatively boring case), while, for charF = p, C
carries a categorical action of ŝlp that makes [C] into the irreducible module V (ω0) (and, in
particular, computes the number of the irreducible FSn-modules for any n). The functors
Ei come from restrictions (from Sn to Sn−1), while functors Fi come from inductions (from
Sn−1 to Sn).

We’ll proceed as follows. First, we produce the functors Ei. Then we decompose C into the
direct sum of subcategories (that later will be shown to be weight subcategories). Next, we
will define the functors Fi. Finally, we will discuss functor morphisms we need. In the next
lecture, we will start by showing that [Ei], [Fi] define a weight Kac-Moody representation on
[C].

2. Restriction and induction functors

Let ZF denote the ring of integers inside F (i.e., Z if charF = 0 and Z/pZ if charF = p). We
write C (or CF if we want to indicate the dependence on the base field F) for

⊕
n>0 FSn -mod.

Here S0 = S1 = {1}.

2.1. Functors Ei. As in Lectures 1,2, to study the representations of FSn we use “induction”
based on the chain of inclusions S0 ⊂ S1 ⊂ . . . ⊂ Sn−1 ⊂ Sn ⊂ . . . (where, recall, Sn−1

consists of all permutations in Sn that fix n). We can restrict an FSn-module to FSn−1 getting
the restriction functor Resnn−1 : FSn -mod → FSn−1 -mod. Our goal now is to decompose
Resnn−1(M) into a direct sum in a functorial (in M) way.

For this, recall the Jucys-Murphy element Ln :=
∑n−1

i=1 (in) ∈ FSn. It commutes with
Sn−1 and hence the map XM : Resnn−1(M) → Resnn−1(M) given by XM(m) = Lnm is an
endomorphism of an FSn−1-module. This endomorphism is functorial in M because any
Sn-linear homomorphism M → M ′ commutes with Ln. So the endomorphisms XM form an
endomorphism of the functor Resnn−1.

The decomposition of Resnn−1(M) we need is that into the generalized eigenspaces for
XM . Let us recall how this works when charF = 0. Independently of F, the irreducible
Sn-modules are parameterized by the Young diagrams λ with n boxes, we write Mλ for the
irreducible module corresponding to λ. We have

Resnn−1(Mλ) =
⊕
µ

Mµ,
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where the sum is taken over all diagrams µ obtained from λ by removing a single box.
Moreover, the summands Mµ are precisely the eigenspaces for Ln. More precisely, let b be
the box in λ \ µ. We define its content c(b) as x− y, where x, y are the coordinates of b, see
the example below.

Example 2.1. Let λ = (3, 1, 1, 1), the diagram is as follows

b1

b2

We have two removable boxes in λ denoted by b1, b2. Note that c(b1) = 3 − 1 = 2 and
c(b2) = 1 − 4 = −3. So Res65(M) = Mµ1 ⊕ Mµ2 , where µ1 = (2, 1, 1, 1) and µ2 = (3, 1, 1).
The eigenvalues of L6 on Mµ1 ,Mµ2 are 2 and −3, respectively.

Lemma 2.2. Let charF = p. Then the eigenvalues of XM are in Z/pZ.

Proof. For F = C, the eigenvalues of Ln in any module, in particular, in CSn are integral.
So there are integers a1, . . . , am such that

∏m
i=1(Ln − ai) = 0. This equality holds in CSm

and hence also in ZSn. Therefore it also holds in FSn and we are done. �
For i ∈ ZF, let Resnn−1(M)i denote the generalized eigenspace for XM in M with eigen-

value i. The assignment M 7→ Resnn−1(M)i is a functor FSn -mod → FSn−1 -mod (again,
for the reason that any Sn-linear homomorphism is also Ln-linear). We have Resnn−1 =⊕

i∈ZF
Resnn−1(•)i.

We write E for
⊕∞

i=0Res
n
n−1(•) so that EM = Resnn−1(M) for M ∈ FSn -mod. Then E

is an endofunctor of C. Here we set Res0−1 = 0. Further, we set Ei :=
⊕∞

n=0Res
n
n−1(•)i.

In other words, Ei is the generalized eigen-subfunctor of E for the endomorphism X with
eigenvalue i. We have E =

⊕
i∈ZF

Ei.

2.2. Direct sum decomposition for C. Let H(n) denote the degenerate affine Hecke
algebra with generators X1, . . . , Xn, T1, . . . , Tn−1 to be recalled later. Recall that we have
an algebra isomorphism H(n)/(X1 = 0)

∼−→ FSn sending Xi to the Jucys-Murphy element

Li =
∑i−1

j=1(ji). Recall, Problem 3 in Homework 1, that the symmetric polynomials in the

elements Xi are central in H(n). We get the following corollary.

Lemma 2.3. Symmetric polynomials in L1, . . . , Ln are central in FSn.

Let us take an unordered n-tuple A of elements of ZF. For M ∈ FSn -mod, define the
generalized eigenspace for Z[L1, . . . , Ln]

Sn with eigenvalue A by

MA := {m ∈ M |(P (L1, . . . , Ln)− P (A))km = 0, ∀k ≫ 0, P ∈ Z[x1, . . . , xn]
Sn}.

Then M =
⊕

AMA. Define FSn -modA as the full subcategory of FSn -mod consisting of
all modules M that coincide with MA. We have FSn -mod =

⊕
A FSn -modA (there are no

homomorphisms/extensions between modules belonging to different categories FSn -modA).

Example 2.4. Let charF = 0. Recall that Mλ has a basis vT labelled by the standard
Young tableaux T of shape λ. We have LivT = c(bi)vT , where bi is the box labelled by i
in T . Hence Mλ = (Mλ)c(λ). So if A coincides with c(λ) (the unordered collection of the
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contents of the boxes in λ), then FSn -modA is spanned by Mλ and, otherwise, FSn -modA

is zero.

We view A as a multiset. We will write A \ {i} (resp., A ∪ {i}) for the multiset, where
the multiplicity of i is decreased (resp., increased) by 1.

Lemma 2.5. Let M ∈ FSn -modA. If i ̸∈ A, then EiM = 0. Otherwise EiM ∈ FSn -modA\{i}.

Proof. A is a collection of simultaneous eigenvalues of (L1, . . . , Ln). So if i ̸∈ A, then
EiM = 0. If i ∈ A, and B is a collection of simultaneous eigenvalues of (L1, . . . , Ln−1)
in EiM , then B ∪ {i} is a collection of simultaneous eigenvalues of L1, . . . , Ln in M . So
A = B ∪ {i} and B = A \ {i}. �

Let πA denote the projection functor FSn -mod � FSn -modA, πA(M) := MA. Then, for
M ∈ FSn -modA, we get EiM = πA\{i} ◦ EM , where we assume that πA\{i} := 0 if i ̸∈ A.
Note that πA is both left and right adjoint for the inclusion functor FSn -modA ↪→ FSn -mod.

2.3. Functors Fi. We have a left adjoint Indn−1
n and a right adjoint Coindn−1

n functors to
Resnn−1 : FSn -mod → FSn−1 -mod. The former is given by N 7→ FSn ⊗FSn−1 N , while the
latter is given by N 7→ HomSn−1(FSn, N).

Lemma 2.6. We have a functor isomorphism Indn−1
n

∼= Coindn−1
n .

Proof. Note that Coindn−1
n (N) = (FSn)

∗⊗FSn−1N , where (FSn)
∗ is equipped with a bimodule

structure given by ⟨aαb, c⟩ := ⟨α, bca⟩. The claim about the isomorphism of functors will
follow if we check that FSn

∼= (FSn)
∗ as an FSn-FSn−1-bimodule. In fact, we have an

isomorphism of FSn-bimodules. Namely, consider the bilinear form (·, ·) on FSn given by
(g, h) = δgh,1. It is a direct check that the identification FSn

∼= (FSn)
∗ with respect to this

form is an isomorphism of FSn-bimodules. �
Our goal now is to produce a left adjoint of the functor Ei, i ∈ ZF, to be denoted by Fi.

This can be done in two equivalent ways. We can define the functors Fi on all categories
FSn−1 -modB and then extend them to FSn−1 -mod by additivity. On FSn−1 -modB, the
functor Fi is defined by πB∪{i} ◦ F so that F =

⊕
i∈ZF

Fi.

Lemma 2.7. The functor Fi is biadjoint to Ei.

Proof. Let us show that Fi is left adjoint to Ei, the other adjunction is similar. It is
enough to establish a bi-functorial isomorphism HomSn(FiN,M) ∼= HomSn−1(N,EiM) for
N ∈ FSn−1 -modB,M ∈ FSn -modA. Both sides are zero if A ̸= B ∪ {i}. If A = B ∪ {i},
then the l.h.s. is HomSn(FN,M) (because HomSn−1(FjN,M) = 0 for j ̸= i) and similarly
the r.h.s. is HomSn−1(N,EM). Since F is left adjoint to E, we are done. �

Here is an equivalent way to produce Fi. Since F is left adjoint to E, the algebra End(E)
gets identified with End(F )opp (where the superscript means that the multiplication is taken
in the opposite order). This is a consequence of the Yoneda lemma and the adjointness. So
we get an endomorphism X ∈ End(F )opp. Then Fi is the generalized eigenfunctor for X
with eigenvalue i.

2.4. Functor morphisms. As we have mentioned before, we also need to consider some
functor morphisms. We have already seen some of those: we had an endomorphism X of the
functor E. We also had morphisms 1 → EF, FE → 1, where 1’s denote the identity functors
(from the adjointness: F is left adjoint to E). But we actually need more morphisms. Those
will be endomorphisms of Ed =

⊕
Resnn−d.
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A recipe to construct these endomorphisms is similar to what was done for X: we will
get them from elements of (FSn)

Sn−d . The elements that we are going to use are Ln−d+i =∑n−d+i−1
j=1 (j, n+d− i), i = 1, . . . , d, and (n−d+ i, n−d+ i+1), i = 1, . . . , i−1. Recall from

Lecture 2 that these elements satisfy the relations of the degenerate affine Hecke algebra
H(d) that is generated by the elements X1, . . . , Xd, T1, . . . , Td−1 subject to the relations:

XiXj = XjXi,

TiTj = TjTi, for |i− j| > 1, TiTi+1Ti = Ti+1TiTi+1, T 2
i = 1,

TiXj = XjTi, for j − i ̸= 0, 1, TiXi = Xi+1Ti − 1.

As we have seen, there is an algebra homomorphismH(d) → (FSn)
Sn−d mappingXi to Ln−d+i

and Ti to (n− d+ i, n− d+ i+1). This yields an algebra homomorphism H(d) → End(Ed).
Let us make a remark that will become useful later. We can recover the images of Xi

in End(Ed) from X ∈ End(E). For this we need the following general construction. Let
F ,G be endofunctors of a category C and let X ∈ End(F), Y ∈ End(G). Then we get the
endomorphisms of FG given by (X1)M := XG(M), (1Y )M := F(YM). With this notation, Xi

goes to the endomorphism 1i−1X1d−i.
Similarly, we can recover the image of Ti from T ∈ End(E2) that is the image of T1, i.e.,

TM(m) = (n− 1, n)m for M ∈ FSn -mod,m ∈ M . Namely, Ti maps to 1i−1T1d−i−1.
Note that this description makes some of the relations between the images of Xi, Ti in

End(Ed) automatic (e.g., the relation that XiXj = XjXi), while others only need to be
checked for small d (for example, it is enough to check that TiTi+1Ti = Ti+1TiTi+1 for d = 3).


