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Introduction

The Deligne-Simpson problem asks to find a condition on conjugacy classes C1, . . . , Ck ⊂
Matn(C) such that there are matrices Yi ∈ Ci with

(1)
∑k

i=1 Yi = 0,
(2) and there are no proper subspaces in Cn stable under all Yi.

Crawley-Boevey reduced this problem to checking if there is an irreducible representation in
Rep(Πλ(Q), v) for suitable Q, λ, v produced from C1, . . . , Ck. Recall, Section 4.1 of Lecture
17, that this is equivalent to v ∈ Σλ, where Σλ ⊂ ZQ0 is a combinatorially defined set.

Crawley-Boevey’s approach was strongly motivated the Kraft-Procesi construction who
proved that the closures of conjugacy classes of matrices are normal. The proof easily
reduces to the case of nilpotent orbits. Kraft and Procesi realized their closures as certain
quotients that are special cases of Nakajima quiver varieties. This allowed them to prove
the normality.

In the first section we will recall the necessary background from Invariant theory, a field
that studies quotients under group actions. Then we will explain the Kraft-Procesi construc-
tion. Finally, we will explain Crawley-Boevey’s approach to the DS problem.

1. Invariant theory

Let X be an affine algebraic variety and let G be a reductive algebraic group (such as
GL(n) or, more generally, Gv). We assume that G acts on X in such a way that the action
map G ×X → X is a morphism of algebraic varieties. If X = V is a vector space, then a
rational representation of G in V provides an example of such an action. In general, we can
G-equivariantly embed X into V (as a closed subvariety). Our goal is to study the algebra
C[X]G = {f ∈ C[X]|f(g.x) = f(x), ∀x ∈ X, g ∈ G}.

The first general result here is due to Hilbert.

Theorem 1.1. The algebra C[X]G is finitely generated.

So we can consider the variety X//G with algebra C[X]G of polynomial functions. The
inclusion C[X]G ↪→ C[X] gives rise to a dominant morphism π : X → X//G. It turns out
that this morphism has very nice properties (that follow because G is reductive).

Theorem 1.2. The following is true.

(1) The morphism π is surjective.
(2) Let Y1, Y2 ⊂ X be closed G-stable subvarieties of X with Y1 ∩ Y2 = ∅. Then π(Y1) ∩

π(Y2) = ∅. In particular, every fiber of π contains a unique closed orbit.
(3) Let Z be an affine algebraic variety with a G-invariant morphism φ : X → Z. Then

there is a unique morphism ψ : X//G→ Z such that φ = ψ ◦ π.
(4) In particular, if X ′ ⊂ X is a closed G-stable subvariety, then the induced morphism

X ′//G ↪→ X//G is a closed embedding with image π(X ′).
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Here is an important example of a computation of X//G and π. Let V, V ′ be finite
dimensional vector spaces, X = Hom(V, V ′) × Hom(V ′, V ), G = GL(V ′) acts on X by
g.(A,B) = (gA,Bg−1). The following result is traditionally known as the (first and second)
“main theorem of invariant theory for GL(V ′)”.

Theorem 1.3. The quotient X//G is the subvariety of all operators of rank 6 dimV ′ in
End(V ). The quotient morphism π : X → X//G is given by (A,B) 7→ BA.

We will need the following corollary of Theorem 1.3 combined with (4) of Theorem 1.2.

Corollary 1.4. Let X0 ⊂ Hom(V, V ′) × Hom(V ′, V ) be a GL(V ′)-stable subvariety. Then
X0//GL(V ′) = {BA|(A,B) ∈ X0}.

Note that X0//GL(V ′) is a closed GL(V )-stable subvariety of End(V ).

2. Orbit closures

2.1. Induction lemma. We are going to investigate the following question. Let λ =
(λ1, . . . , λk) be a Young diagram with n boxes (we assume that λk > 0). To this diagram we
can assign the nilpotent orbit Oλ ⊂ Matn(C) consisting of all matrices whose Jordan normal
form has blocks of sizes λ1, . . . , λk. Now set λ′ = (λ1 − 1, . . . , λk − 1), this is the Young
diagram obtained from λ by removing the first column. Let n′ := |λ′|, the number of boxes
in λ′. Further, let λ(i) denote the diagram obtained from λ by removing the first i columns.
Note that Oλ = {Y ∈ Matn(C)| rkY i = |λ(i)|}, while Oλ = {Y ∈ Matn(C)| rkY i 6 |λ(i)|}.

Set V := Cn, V ′ := Cn′
.

Lemma 2.1. The set {BA|A ∈ Hom(V, V ′), B ∈ Hom(V ′, V ), AB ∈ Oλ′} coincides with Oλ.
Moreover, we have BA ∈ Oλ if and only if A is surjective, B is injective, and AB ∈ Oλ′.

Proof. Note that (BA)i+1 = B(AB)iA. We have rk((BA)i+1) 6 rk((AB)i) 6 |λ(i+1)|. It
follows that BA ∈ Oλ. The condition that BA ∈ Oλ is equivalent to rk((BA)i+1) = |λ(i+1)|
for all i. The condition that rk(BA) = |λ(1)| = dimV ′ is equivalent to A being surjective
and B being injective. If that holds, then rk((BA)i+1) = rk((AB)i). This completes the
proof. �

2.2. Oλ as a quiver variety. Let m := λ1. Consider the Dynkin quiver of type Am, we
number vertices by numbers from 0 to m−1. We orient it left to right. Set vi := |λ(i)| and let
V0 = V, V1, . . . , Vm−1 be the spaces of these dimensions. The corresponding representation
space Rep(Q, v) consists of the 2m− 2-tuples (A1, B1, A2, B2, . . . , Am−1, Bm−1), where Ai ∈
Hom(Vi−1, Vi) and Bi ∈ Hom(Vi, Vi−1):

V0 V1 V2
. . . Vm−1

-
�

A1

B1

-
�

A2

B2

-
�

A3

B3

-
�

Am−1

Bm−1

Consider the group G = GL(V1)× . . .×GL(Vm−1). The moment map µ : Rep(Q, v) → g
is given by µ = (µ1, . . . , µm−1), where µi sends (Aj, Bj)

m
j=1 to AiBi−Bi+1Ai+1 (where we set

Am = Bm = 0).
The following result is due to Kraft and Procesi.

Proposition 2.2. The image of the map µ−1(0) → End(V ) sending (Ai, Bi)
m−1
i=1 to B1A1

has image Oλ and induces an isomorphism µ−1(0)//G
∼−→ Oλ.
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Proof. Our proof is by induction on i. The base is the empty quiver. To do the induction
step, assume that the analog of our claim is established for the subquiver Q′ with vertices

1, . . . ,m − 1 and the group G′ = GL(V2) × . . .GL(Vm−1). Let µ′ : Rep(Q
′
, v′) → g′ be the

corresponding moment map so that Rep(Q, v) = Hom(V, V1)×Hom(V1, V )×Rep(Q
′
, v′), G =

GL(V1) × G′, µ((Ai, Bi)) = (A1B1 − B2A2, µ
′). We can produce the quotient µ−1(0)//G in

two steps: (µ−1(0)//G′)//GL(V1). Note that A1, B1 are G
′-invariant. By the inductive step,

µ′−1(0)//G′ ∼−→ Oλ′ via (A2, B2, . . . , Am−1, Bm−1) → B2A2. It follows that µ−1(0)//G′ =
{(A1, B1)|A1B1 ∈ Oλ′}. Combining Corollary 1.4 with Lemma 2.1, we see that the map
(A1, B1) 7→ B1A1 gives rise to an isomorphism of µ−1(0)//G and Oλ. �
Remark 2.3. Let us explain how this helps to prove normality. First, if an affine variety X
is normal, then so is X//G, this is an exercise. Now to prove that µ−1(0) is normal we need
to do two things: to show that it is a complete intersection (its codimension equals dimG)
and apply the Serre normality criterium saying that µ−1(0) is normal if the complement of
the locus where µ is not submersive has codimension bigger than 1. In order to do this one
observes that µ is a submersion at a point v precisely when Gv is discrete (in our case, this
is equivalent for Gv = {1}). Both claims are proved inductively based on Lemma 2.1.

2.3. Closure of an arbitrary orbit. Lemma 2.1 generalizes to arbitrary orbits as follows.
Take an orbit C ⊂ Matn(C). Let λ be the Young diagram corresponding to the nilpotent
component of C. Set n′ := n− |λ|+ |λ′| and let C ′ be the orbit in Matn′(C) obtained from
C by replacing the nilpotent part Oλ with Oλ′ . The proof of the following lemma is left to
the reader.

Lemma 2.4. The set {BA|A ∈ Hom(V, V ′), B ∈ Hom(V ′, V ), AB ∈ C
′} coincides with C.

Moreover, we have BA ∈ C if and only if A is surjective, B is injective, and AB ∈ C ′.

When C consists of non-degenerate operators we can replace C with C −χ, where χ is an
eigenvalue of C (and we write C − χ = {Y − χ idCn |Y ∈ C}) and apply Lemma 2.4 to that
orbit. This motivates the following construction.

Let χ1, . . . , χm be all roots of the minimal polynomial of C counted with multiplicities so
that, for Y ∈ C, we have

∏m
i=1(Y −χi) = 0. Check the Dynkin diagram of type Am oriented

as before. Set vi := rk
∏i

j=1(Y − χi) and ξi = χi+1 − χi, i = 1, . . . ,m− 1. Consider G,µ as

before and set ξ :=
∑m

i=1 ξi idVi
.

The proof of the following proposition repeats that of Theorem 1.3

Proposition 2.5. We have an isomorphism µ−1(ξ)//G
∼−→ C induced by (Ai, Bi)

m−1
i=1 7→

B1A1 + χ1.

Example 2.6. Let us consider an example of this. Let C consist of the projectors in Matn(C)
of rank r < n. The quiver Q will have type A2. Then we can set χ1 = 0 and χ2 = 1. We
have ξ2 = 1, v1 = r, the moment map equation is AB = 1 and the map µ−1(0) → C = C is
(A,B) 7→ BA. Or we can set χ1 = 1, χ2 = 0. In this case, v1 = n− r, ξ1 = −1. The moment
map equation is AB = −1 and the map µ−1(0) → C is (A,B) 7→ BA+ 1.

Remark 2.7. Let (Ai, Bi)
m−1
i=1 ∈ µ−1(ξ) be such that Y := B1A1 + χ1 ∈ C. We can

recover (Ai, Bi)
m−1
i=1 up to G-conjugacy from Y as follows. Since Y ∈ C, we see that all

Ai are surjective and all Bi are injective. We can assume that V = V0 ⊃ V1 ⊃ V2 ⊃ . . .
and all Bi’s are inclusions. Then A1 = Y − χ1 : V0 → V1 = im(Y − χ1). We have
A2|V1 + χ2 = B2A2 + χ2 = A1B1 + χ1 = (Y − χ1)|V1 + χ1 = Y |V1 . So A2 = (Y − χ2)|V1 .

Continuing in this way we see that Vi = im
∏i

j=1(Y − χj) and Ai = (Y − χi)|Vi−1
for all i.
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3. Solution to Deligne-Simpson problem

Recall that we are interested in solutions of the DS problem: describe GLn(C)-orbits
C1, . . . , Ck in Matn(C) such that there are Yi ∈ Ci with

(1)
∑k

i=1 Yi = 0,
(2) and there are no proper subspaces in Cn stable under all Yi.

We are going to produce a quiver Q, a dimension vector v and a parameter λ out of
C1, . . . , Ck.

The quiver Q and the dimension vector v are as follows. Produce the type A quivers from
C1, . . . , Ck, let [0, i], [1, i], . . . , [mi, i] denote the vertices of the quiver corresponding to Ci.
Identify the vertices [0, i] with a single vertex 0 getting a star-shaped quiver. Denote the
dimension vector v so that (v[0,i], . . . , v[mi,i]) is the dimension vector produced from Ci (so

that v0 = n). Define ξ[j,i] as above for j > 0, set ξ0 =
∑k

i=1 χ[1,i]. Note that ξ0 is chosen in

such a way that the equalities
∑k

i=1 tr(Yi) = 0 (a necessary condition for the DS problem to

have a solution) and v0ξ0+
∑k

i=1

∑mi

j=1 v[j,i]ξ[j,i] = 0 (a necessary condition for Πξ(Q) to have

a representation of dimension v) are equivalent.

Example 3.1. Assume that n = 6 and k = 3. We take the following conjugacy classes
C1, C2, C3: C1 contains diag(−2,−1, 0, 1, 2, 3), C2 contains diag(−1,−1,−1, 0, 0, 0), and
C3 = Oλ, for λ = (3, 3). Then we getm1 = 5,m2 = 1,m3 = 2 with v[?,1] = (5, 4, 3, 2, 1), v[1,2] =
3, v[?,3] = (4, 2). Further, ξ[?,1] = (1, 1, 1, 1, 1), ξ[1,2] = 1, ξ[?,3] = (0, 0), ξ0 = −3. We note that

the resulting quiver is of type Ẽ8 and v is the indecomposable imaginary root δ.

Theorem 3.2. There is a bijection between the solutions Y1, . . . , Yk of the DS problem (up
to conjugacy) and the irreducible representations in Rep(Πξ(Q), v) (up to isomorphism).

First, let us get a necessary and sufficient condition for a representation of Πξ(Q) to be
irreducible.

Lemma 3.3. The following two conditions are equivalent:

(1) A representation (A[j,i], B[j,i]) ∈ Rep(Πξ(Q), v) is irreducible.
(2) All maps A[j,i] are surjective, all maps B[j,i] are injective, and the space Cn is irre-

ducible with respect to the operators B[1,i]A[1,i].

Proof. Suppose (1) holds and let us establish (2). Assume the map A[j,i] is not surjective.
Set U[j′,i′] := V[j′,i′] if i

′ ̸= i or j′ < j, U[k,i] := A[k,i]U[k−1,i] for k > j. The moment map
equation implies that B[k,i]U[k+1,i] ⊂ U[k,j]. Indeed, we have B[k,i]U[k+1,i] = B[k,j]A[k,j]U[k,j] =
(A[k−1,j]B[k−1,j] + ξ[k−1,i])U[k,i] ⊂ U[k,i]. We deduce that (U[k,i]) ⊂ (V[k,i]) defines a proper
subrepresentation, a contradiction. The remaining parts of (2) are left as exercises.

Conversely, suppose that (2) holds. Let (U[j,i]) ⊂ (V[j,i]) be a proper subrepresentation.
The condition that V0 is irreducible w.r.t. B[1,i]A[1,i] implies that U0 = {0} or U0 = V0. In
the former case, U[j,i] = {0} because all B[j,i] are injective, in the latter case, U[j,i] = V[j,i]
because all A[j,i] are surjective. �

Proof of Theorem 3.2. Let (A[j,i], B[j,i]) be an irreducible representation in Rep(Πξ(Q), v).
Then Yi := B[1,i]A[1,i] + χ[1,i], i = 1, . . . , k is a solution to the Deligne-Simpson problem
(the claim that

∑
i Yi = 0 is the moment map condition at 0, while the claim that Cn is

irreducible w.r.t. the Yi’s follows from Lemma 3.3). Conversely, let (Yi)
k
i=1 be the solution

to the DS problem. We can form the maps A[i,j], B[i,j] as in Remark 2.7, and this will give
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an irreducible representation in Rep(Πξ(Q), v). On the level of isomorphism classes, these
two maps are inverse to each other. �
Example 3.4. In the example above, the DS problem has a solution. Moreover, the variety
of conjugacy classes of (Y1, Y2, Y3) can be shown to be 2-dimensional.


