
LECTURE 16: REPRESENTATIONS OF QUIVERS

IVAN LOSEV

Introduction

Now we proceed to study representations of quivers. We start by recalling some basic
definitions and constructions such as the path algebra and indecomposable representations.
Then we state a theorem of Kac that describes the dimensions, where the indecomposable
representations occur as well as the number of parameters needed to describe their iso-
morphism classes. We will prove the Kac theorem only partially using Crawley-Boevey’s
approach based on deformed preprojective algebras. This approach does not allow to prove
Kac’s theorem completely but it is more elementary than Kac’s original approach.

1. Representations of quivers

1.1. Quivers and their representations. By a quiver we mean an oriented graph, possibly
with multiple edges and loops. Formally, it is a quadruple Q := (Q0, Q1, t, h), where Q0, Q1

are finite sets of vertices and arrows and t, h : Q1 → Q0 are maps (taking an arrow a to its
tail and head), see Picture 1.1. See Pictures 1.2, 1.3 for some examples of quivers.

A representation of a quiver Q is an assignment that takes every vertex i ∈ Q0 to a
vector space Vi and every arrow a ∈ Q1 to a map xa : Vt(a) → Vh(a). In particular, a
representation of the quiver in Picture 1.2(a) is a pair V1, V2 of vector spaces and maps
xa : V1 → V2, xb : V2 → V1.

As with groups and algebras, a representation of a quiver Q is the same thing as a module
over a suitable associative algebra, the path algebra CQ of Q. This algebra is constructed as
follows. A basis in this algebra is formed by all paths in Q. By a path in Q we mean either
the empty path p = ϵi, i ∈ Q0, or a sequence p = (a1, . . . , ak) of arrows with t(ai) = h(ai+1).
We set t(p) = t(ak), h(p) = h(a1) (and h(ϵi) = t(ϵi) = i). The multiplication is introduced
as follows: we have p1p2 = 0 if h(p2) ̸= t(p1), and p1p2 is the concatenation of p1, p2 else.
Note that CQ becomes an associative algebra with unit 1 =

∑
i∈Q0

ϵi.
Let us produce a natural bijection between the representations of Q and the CQ-modules.

Given a representation (Vi, xa) we define the CQ-module V :=
⊕

i∈Q0
Vi, where the action is

introduced by ϵiuj = δijuj, auj = xa(δjt(a)uj), where uj ∈ Vj. We extend the multiplication
to an arbitrary path p in an obvious way. Conversely, given a CQ-module V , we get a
representation (Vi, xa) by Vi := ϵiV, xa = aϵt(a).

In particular, we see that the representations of Q form an abelian category. A morphism
(Vi, xa) → (V ′

i , x
′
a) can be interpreted as a collection of maps yi : Vi → V ′

i with yh(a) ◦ xa =
x′a ◦ yt(a).

We are interested in the case when dimVi <∞ for all i. Then we can define the dimension
vector v := (dimVi)i∈Q0 .

1.2. Indecomposable representations and equivalence. As usual, the main goal in
our study of the representations of Q (equivalently, of CQ) is their classification up to
an isomorphism. The Krull-Schmidt theorem reduces this task to the classification of the
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indecomposable representations. Recall that by an indecomposable representation of an
algebra A we mean a representation U that does not split into the direct sum of two nonzero
representations of A. Clearly, any finite dimensional representation decomposes into the
sum of indecomposable ones. The Krull-Schmidt theorem says that such a decomposition is
unique. More precisely, we have the following.

Theorem 1.1. Let A be an algebra, U be a finite dimensional A-module and U =
⊕

i∈I Ui =⊕
j∈J U

′
j be two decompositions into the indecomposable representations. Then there is a

bijection σ : I
∼−→ J such that Ui

∼= U ′
σ(i).

So what we want to study is the indecomposable representations of CQ up to an iso-
morphism. What makes this problem especially nice is that it reduces to describing orbits
of a reductive group action on a vector space. Namely, fix vector spaces Vi, let v be the
dimension vector. Then the linear maps (xa) naturally form a vector space Rep(Q, v) =⊕

a∈Q1
Hom(Vt(a), Vh(a)). On this space we have an action of the group Gv :=

∏
i∈Q0

GL(Vi)

given by “change of bases”: (gi).(xa) = (gh(a)xag
−1
t(a)). Clearly, the representations of CQ on

V given by (xa), (x
′
a) are isomorphic if and only if (xa) and (x′a) lie in the same Gv-orbit. So

what we need to do is to describe the Gv-orbits in Rep(Q, v).
To finish this section let us provide two classical linear algebraic examples.

Example 1.2. Let us consider the quiver of type A2 (two vertices and one arrow between
them). Then Rep(Q, v) = Hom(V1, V2) and Gv = GL(V1) × GL(V2) acts on this space
(g1, g2).x = g2xg

−1. The maps x, x′ lie in the same orbit if and only if rkx = rk x′. Such a
map is indecomposable if and only if dimV1 = 1, dimV2 = 0 or vice versa (and xa is zero)
or dimV1 = dimV2 = 1 and xa is an isomorphism.

Example 1.3. Consider the case when Q is the Jordan quiver. Here V is a single vector
space and Gv = GL(V ) acts on V by conjugations. The orbits are classified by the Jordan
normal forms (up to permutation of blocks). The indecomposable representations are the
single Jordan blocks.

1.3. Questions. In general, the complete description of the Gv-orbits in Rep(Q, v) is a wild
problem that can only be solved completely when Q is a type A,D,E or a type Ã, D̃, Ẽ type
diagram (see Picture 1.3. for the latter).

One question that we will answer completely is about the possible dimensions of the inde-
composable representations. We will also describe the “number of parameters” that is needed
to describe the equivalence classes of the indecomposable representations in Rep(Q, v). Let
us make this formal.

Let X be an algebraic variety equipped with an action of an algebraic group G. Define
the subset X6i := {x ∈ X| dimGx 6 i} and Xi := X6i \X6i−1. Note that X6i is a closed
subvariety of X and hence Xi is open in X6i. We define pG(X), the number of parameters
for the G-orbits in X, to be pG(X) := maxi(dimXi − i). Note that pG(X) = 0 if and only
if X consists of finitely many orbits.

To talk about the number of parameters of the indecomposable representations we need
to extend the function pG to G-stable constructible subsets of X. Recall that a constructible
subset, by definition, is a union of locally closed subvarieties. By the Chevalley theorem, the
image of a morphism of algebraic varieties is constructible.

Lemma 1.4. The following is true.

(1) A G-stable constructible subset Y is a union of G-stable locally closed subvarieties.
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(2) The subset of indecomposable representations in Rep(Q, v) is constructible.

Proof. There is an open subset Y 0 ⊂ Y such that dimY 0 > dimY \ Y 0. We can replace Y 0

with GY 0 (still open) and assume that Y 0 is G-stable. Then we induct on dimY to prove
(1).

Let us prove (2). For any decomposition v = v′ ⊕ v′′, we have a Gv-equivariant morphism
ψv′,v′′ : Gv × Rep(Q, v′) × Rep(Q, v′′) → Rep(Q, v), (g, (x′a), (x

′′
a)) 7→ g.(x′a ⊕ x′′a). The set

of the indecomposable representations is the complement to
∪
imψv′,v′′ , where the union is

taken over all proper decompositions v = v′ ⊕ v′′. Hence it is constructible. �
This lemma allows to define pv, the number of parameters needed to describe the orbits

of indecomposable representations in Rep(Q, v).

Example 1.5. For the quiver of Dynkin type A2, the number of orbits is finite. So the
number of parameters is 0.

Example 1.6. For the Jordan quiver, pn = 1, for all n ∈ Z>0.

2. Kac’s theorems

2.1. Root system and Weyl group. It turns out that the answers to our questions about
Rep(Q, v) are stated in terms of the root system of the Kac-Moody algebra g(A), where A is
the Cartan matrix of Q, given by aij = 2δij − nij, where nij stands for the number of edges
between i, j. We are going to recall the corresponding definitions in the form that we need
(we need to work in a more general setting, where we have loops, in which case the algebra
g(A) was not defined).

Define two spaces h, h∗ with bases α∨
i , αi, where i ∈ Q0. Define the Tits form on h∗ with

matrix A. In other words, if we identify h∗ with CQ0 by
∑

i∈Q0
xiαi 7→ x = (xi)i∈Q0 , then

the form is given by (x, y) = 2
∑

i∈Q0
xiyi−

∑
a∈Q1

(xt(a)yh(a)−yt(a)xh(a)). For i ∈ Q0 without

loops, we define a map si : h
∗ → h∗ by x 7→ x − (x, αi)αi. This map is a reflection with

respect to the hyperplane (α, ·) = 0. It maps
∑

i∈Q0
xiαi to

∑
i∈Q0

x′iαi, where xj = x′j if

j ̸= i and x′i =
∑

j nijxj − xi. The subgroup of GL(h∗) generated by the reflections si is

denoted by W (or W (Q)) and is called the Weyl group of Q.
Now let us define the real and imaginary roots of Q. A real root is a W (Q)-conjugate of

some αi, where i has no loops. Note that (α, α) = 2 for any real root α. To define imaginary
roots without referring to the corresponding Kac-Moody algebra is more complicated. We
define the support Suppα of an element α =

∑
i xiαi ∈ h∗ as the set of all i such that xi ̸= 0.

So we can speak about connected and disconnected (as subgraphs of Q w/o orientation)
supports. By an imaginary root we mean a nonzero element α ∈ SpanZ>0

(αi)i∈Q0 with

connected support such that (α, α) 6 0.

Lemma 2.1. Let α be an imaginary root. Then W (Q)α ⊂ SpanZ>0
(αi)i∈Q0.

The proof is a part of the homework.

2.2. Kac theorem. Here’s one of the main result about indecomposable representations of
quivers.

Theorem 2.2. The following is true.

(a) There is an indecomposable representation with dimension vector v ∈ CQ0 if and only
if
∑

i viαi is a root.
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(b) If v is a real root, then there is a unique indecomposable representation with dimension
vector v.

(c) In general, if v is a root, then pv = 1− 1
2
(v, v).

Example 2.3. If Q is of type A2, then there are three roots: (1, 1), (0, 1), (1, 0), and Kac’s
theorem clearly holds.

Example 2.4. Let Q be the Jordan quiver (type Ã0). Then the positive root system
coincides with Z>0. We have (n, n) = 0 for any n. The Kac theorem predicts that the number
of parameters describing the orbits of indecomposable representations equals 1− 0 = 1. We
have seen that this is indeed the case.

We are not going to prove all statements of Kac’s theorem. We will only check that the
dimension of any indecomposable representation is a root, we will prove part (b), and we
will check (c) assuming (a) holds and v is primitive (i.e. GCD(vi)i∈Q0 = 1).

We also note that the answer in Kac’s theorem does not depend on an orientation of Q.
As the homework shows, in many examples some orientations are easier than the others.

3. Deformed preprojective algebras

3.1. Definition. We fix an element λ ∈ CQ0 and define an algebra Πλ(Q) (due to Crawley-
Boevey and Holland) depending on λ. This algebra is known as the deformed preprojective
algebra.

First, let us define the double quiver Q. We have Q0 = Q0 and Q1 = Q1 ⊔ Qop
1 , where

Qop
1 is identified with Q1 as a set (we denote the corresponding bijection by a 7→ a∗) with

t(a∗) = h(a), h(a∗) = t(a) (in other words, for every arrow in Q, we add the opposite arrow).
We set

Πλ(Q) = CQ/(
∑
a∈Q1

[a, a∗]−
∑
i∈Q0

λiϵi).

This relation can be expanded as the Q0-tuple of relations
∑

a,h(a)=i aa
∗−

∑
a,t(a)=i a

∗a = λiϵi.

Example 3.1. Consider the A2-quiver. Then CQ is generated by the elements ϵ1, ϵ2, a, b
with relations ϵ2a = aϵ1 = a, ϵ1b = bϵ2 = b. In Πλ(Q), we have two more relations ba =
λ1ϵ1, ab = λ2ϵ2. Here the algebra Πλ(Q) is finite dimensional but its dimension depends on
λ1, λ2.

Example 3.2. Consider the Jordan quiver. Here Πλ(Q) = C⟨a, a∗⟩/([a, a∗] = λ), the first
Weyl algebra (for λ ̸= 0) and the polynomial algebra for λ = 0.

An important property of Πλ(Q) is that it is independent of the orientation of Q (up to a
natural isomorphism). Namely, suppose that we have changed an orientation of one arrow,
say a, getting a new quiver Q′. Then the map b 7→ b, b∗ 7→ b, (b ̸= a), a 7→ a∗, a∗ 7→ −a
defines an isomorphism CQ ∼= CQ′

that induces an isomorphism Πλ(Q) ∼= Πλ(Q′).

3.2. Moment maps. The subvariety Rep(Πλ(Q), v) ⊂ Rep(Q, v) is given by the equations∑
a,h(a)=i xaxa∗ −

∑
a,t(a)=i xa∗xa = λi idVi

, i ∈ Q0. Let us denote the left hand side by

µi(xa, xa∗).
Set µ := (µi)i∈Q0 : Rep(Q, v) → gv. It turns out that µ : Rep(Q, v) → gv is the so called

moment map for the action of Gv =
∏

i∈Q0
GL(Vi). Let us explain what this means.

First of all, let us notice that Rep(Q, v) is a symplectic vector space. Indeed, for any finite
dimensional vector spaces U,U ′, we can identify Hom(U,U ′)∗ with Hom(U ′, U) via the trace
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form. So Rep(Q, v) = Rep(Q, v) ⊕ Rep(Qop, v) = Rep(Q, v) ⊕ Rep(Q, v)∗. It follows that
Rep(Q, v) comes equipped with a natural non-degenerate skew-symmetric form. Using our
identifications, it can be written as follows ω((xa, xa∗), (ya, ya∗)) =

∑
a∈Q1

tr(xaya∗ − yaxa∗).
Clearly, this form is Gv-invariant.

Now let U be a symplectic vector space with form ω together with a homomorphism
G→ Sp(U) of algebraic groups. By a moment map for this action we mean a G-equivariant
map µ : U → g∗ with the property that

(3.1) ⟨dvµ(u), ξ⟩ = ωv(ξv, u)

(this condition prescribes dµ completely). There is a simple formula for µ: ⟨µ(v), ξ⟩ =
1
2
ω(ξv, v), this formula immediately implies both properties.

Lemma 3.3. The map µ = (µi)i∈Q0 is a moment map for the Gv-action on the symplectic
vector space Rep(Q, v) under the identification of gv with g∗v by means of the trace form.

Proof. What we need to prove is that∑
i∈Q0

tr

 ∑
h(a)=i

xaxa∗yi −
∑
t(a)=i

xa∗xayi

 =

1

2
ω((yh(a)xa − xayt(a), yt(a)xa∗ − xa∗yh(a)), (xa, xa∗), (xa, xa∗))

By definition, the right hand side is

1

2

∑
a∈Q1

(
tr([yh(a)xa − xayt(a))xa∗ ]− tr([yt(a)xa∗ − xa∗yh(a)]xa)

)
.

Rearranging the summation and using the cyclicity of trace, we see that the previous ex-
pression coincides with the l.h.s. �

Let us explain why moment maps are important. Let Hξ = ⟨µ, ξ⟩, this is a function on U .
To this function we can assign the skew-gradient v(Hξ) with respect to ω. Condition (3.1)
means precisely that v(Hξ) coincides with the vector field u 7→ ξu on U .


