
LECTURE 11: SOERGEL BIMODULES

IVAN LOSEV

Introduction

In this lecture we continue to study the category O0 and explain some ideas towards the
proof of the Kazhdan-Lusztig conjecture.

We start by introducing projective functors Pi : O0 → O0 that act by w 7→ w(1 + si) on
K0(O0). Using these functors we produce a projective generator of O0.

In Section 2 we explain some of the work of Soergel that ultimately was used by Elias and
Williamson to give a relatively elementary proof of the Kazhdan-Lusztig conjecture. In order
to relate the category O0 to the Hecke algebra Hq(W ) one needs to produce a graded lift of
that category. In order to do that, Soergel constructed a functor O0 → C[h]coW -mod, where
C[h]coW is the so called coinvariant algebra. He proved that this functor is fully faithful on
the projective objects and has described the image of a projective generator that turns out
to be a graded module. This gives rise to a graded lift of O0. Also these results of Soergel
lead to the notion of Soergel (bi)modules that are certain (bi)modules over C[h]. They are
of great importance for modern Representation theory.

We finish by briefly describing some related constructions: Kazhdan-Lusztig bases for
Hecke algebras with unequal parameters and multiplicities for rational representations of
semisimple algebraic groups in positive characteristic.

1. Projective functors, II

1.1. Functors Pi. Let α1, . . . , αn denote the simple roots. We want to define a projective
functor Pi : O0 → O0. For this we pick λ, µ ∈ P such that λ, µ + ρ, λ − µ are dominant
and the only positive root vanishing on µ + ρ is αi (so λ + ρ lies inside the dominant Weyl
chamber and µ + ρ lies on the wall corresponding to αi). Let V be the irreducible module
with highest weight λ−µ. So we have functors φ := prλ(V ⊗•) : Oµ → Oλ and its biadjoint
φ∗ := prµ(V

∗ ⊗ •) : Oλ → Oµ.

Lemma 1.1. The object φ ◦ φ∗(∆(w · λ)) admits a 2 step filtration by ∆(w · λ),∆(wsi · λ),
where the Verma with the smaller weight appears as the quotient and Verma with the larger
weight appears as a sub.

This is a special case of Proposition 2.3 in the previous lecture.
Now recall (Corollary 2.4 of Lecture 10) that there is an equivalence O0

∼−→ Oλ with
∆(w · 0) 7→ ∆(w · λ). Transferring the functor φ ◦ φ∗ to O0, we get the functor Pi we
need. Note that Pi is exact (and, moreover, is self-adjoint). In particular, Pi induces an
endomorphism of K0(O0) = ZW to be denoted by [Pi].

Corollary 1.2. We have [Pi]w = w(si + 1).

Remark 1.3. This may be viewed as a reason for the identification K0(O0) ∼= ZW (that is
regarded as a right W -module). Indeed, we see that the generators si+1 of the group algebra
ZW lift to endofunctors Pi of O0. This gives one of the first examples of categorification.
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Remark 1.4. One can ask whether it is possible to lift the elements si to endofunctors of
O0. The answer is yes if we are willing to replace O0 with the bounded derived category
Db(O0). Then we can consider the reflection functor Ri given by the cone of the adjunction
morphism 1 → Pi = φ ◦ φ∗. The functors Ri are self-equivalences of Db(O0) that give rise
to an action of the braid group BW on Db(O0). Recall that the group BW is generated by
the elements Ti with relations TiTjTi . . . = TjTiTj . . . (mij factors).

1.2. Projective objects in O0. We start by recalling basics on projective objects in an
abelian category, say C. An object P ∈ C is called projective if the functor HomC(P, •) is
exact. By C -proj we denote the full subcategory of C consisting of projective objects (“full”
means that the morphisms in C -proj are the same as in C). Note that this is an additive
category that is closed under taking direct summands but, in general, has neither kernels
nor cokernels.

We say that C has enough projectives if every object is a quotient of a projective. If all
objects in C have finite length, the condition that C has enough projectives is equivalent
to the condition that every simple L ∈ C has a projective cover PL, i.e., an indecomposable
projective object surjecting onto L (recall that an object is called indecomposable if it cannot
be decomposed into a proper direct sum). If a projective cover exists, it is unique up to an
isomorphism and has no Hom’s to other simple objects. Every projective splits into the
direct sum of projective covers.

We can recover C from C -proj if C has enough projectives and all objects have finite length.
For simplicity, assume, in addition, that C has finitely many simple objects. Let P be a
projective generator of C, i.e., a projective object that surjects onto any simple object. Then
the functor HomC(P, •) is an equivalence of C and the category of right EndC(P )-modules.
We note that EndC(P ) is a finite dimensional associative unital algebra. Conversely, if A is a
finite dimensional associative unital algebra, then the category A -mod of finite dimensional
A-modules has enough projectives, finitely many simples and all objects have finite length.

We are interested in C = O0. As we have seen in Lecture 7, it has finitely many simples
and all objects have finite length. Let us give an example of a projective.

Lemma 1.5. The object ∆(0) is projective in O0.

Proof. Recall that HomO0(∆(0),M) = {m ∈ M0|nm = 0}. But 0 is the maximal weight of
an object in O0 (because w · 0 6 0 for all w). Since the action of n increases weights, we see
that Mn

0 = M0. The functor M 7→ M0 is exact and so ∆(0) is projective. �
Now let w ∈ W have reduced expression si1 . . . siℓ . Let w denote the sequence (si1 , . . . , siℓ).

Set Pw := Piℓ . . .Pi1∆(0).

Proposition 1.6. The category O0 has enough projectives. Moreover, the object Pw decom-
poses into the direct sum of the projective cover of L(w · 0) (it appears with multiplicity 1)
and of the projective covers of L(u · 0) with u ≺ w (in the Bruhat order).

Below P (w · 0) denotes the projective cover of L(w · 0).
Proof. The functors Pi are self-adjoint and so map projectives to projectives. Hence Pw is
projective. So it is enough to show that dimHomO0(Pw, L(w · 0)) = 1 and HomO0(Pw, L(w

′ ·
0)) ̸= 0 implies w′ ≼ w. The object Pw has a filtration with successive Verma quotients.
Set wk = si1 . . . sik and wk := (si1 , . . . , sik). By induction on k (where the step follows from
Lemma 1.1), we see that

(1) ∆(wk · 0) is a quotient of Pwk
.
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(2) All other Verma modules in a filtration of Pwk
have highest weights u · 0, where u is

obtained from wk by removing some simple reflections (and hence u ≺ wk).

For k = ℓ, (1) implies HomO0(Pw, L(w·0)) ̸= 0, while (2) shows that HomO0(Pw, L(w
′ ·0)) ̸= 0

for w′ ̸= w implies w′ ≺ w, and dimHomO0(Pw, L(w · 0)) < 1. �

Example 1.7. Consider the case of sl2. Then 0 → ∆(0) → Ps → ∆(−2) → 0. This exact
sequence does not split (this is a part of the homework). So Ps = P (−2). Applying P to
P (−2), we get P (−2)⊕2.

2. Soergel (bi)modules

Our goal is to give some description of O0 -proj and see that O0 is equivalent to A -mod,
where A is graded. We will follow an approach by Soergel, [S1]. But first let us explain why
we need graded algebras here.

2.1. Graded lift. The first problem in proving the Kazhdan-Lusztig conjecture is that we
do not know how to relate O0 to Hq(W ): the Grothendieck group of O0 is ZW , it does not
“see” q, while it is impossible to define the Kazhdan-Lusztig basis without having q. This is
remedied by considering “graded lifts”.

Namely, let A be a finite dimensional algebra equipped with an algebra grading A =⊕
i∈Z Ai. We can consider the category C := A -mod. Or we can consider the category of

graded A-modules. Its objects are finite dimensional graded A-modules, i.e., A-modules M
equipped with an A-module grading M =

⊕
i∈ZMi (this is a part of the structure). The

morphisms in this category are the grading preserving homomorphisms of A-modules. Let us
write C̃ for the category of graded A-modules. It is an abelian category and we can consider
its Grothendieck group K0(C̃).

The point is that K0(C̃) is not only an abelian group, but also a Z[q±1]-module. For a
graded A-module, we can consider the module M{d} with shifted grading M{d}i := Mi+d.
We set qd[M ] := [M{d}].

Not all A-modules admit a grading. However, we have the following lemma.

Lemma 2.1. All indecomposable projective A-modules and all simple A-modules admit a
grading. Furthermore, if an indecomposable A-module admits a grading, then the grading is
unique up to a shift.

We do not give a proof (it is actually based on the properties of algebraic groups – a basic
observation here is that a grading on M gives rise to a C×-action on M).

So fix some gradings on the simple A-modules L1, . . . , Lk. It follows that the simple graded
A-modules are precisely Li{d}, i = 1, . . . , k, d ∈ Z. Hence K0(C̃) is a free Z[q±1]-module with
basis [L1], . . . , [Lk]. Besides K0(C) = K0(C̃)/(q − 1).

Now let P be a projective generator of O0. Then A := EndO0(P ) is a finite dimensional
algebra and O0

∼= Aopp -mod (the category of right A-modules). The first step to prove the
Kazhdan-Lusztig conjecture is to equip A with a grading (for a suitable choice of P ).

2.2. Structural results on O0 -proj. The idea of Soergel, [S1], was to study the functor
V := HomO0(P (w0 ·0), •). The projective P (w0 ·0) plays a very special role, for example, it is
the only indecomposable projective that is also injective. First, one needs to understand the
target category for this functor, i.e., to compute the endomorphisms of P (w0 · 0). Let C[h]W+
denote the ideal of all elements in C[h]W without constant term. We write C[h]coW (the
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“coinvariant algebra”) for the quotient C[h]/(C[h]W+ ), where we write (C[h]W+ ) = C[h]C[h]W+ .
This is a graded algebra that is isomorphic to CW as a W -module.

Theorem 2.2. We have EndO0(P (w0 · 0))
∼−→ C[h]coW .

The functor V is very far from being an equivalence, for example, it kills all simples but
L(w0 · 0) = ∆(w0 · 0). However, we have the following important result.

Theorem 2.3. The functor V is fully faithful (induces an isomorphism of Hom spaces) on
the projective objects.

In the case of sl2, these theorems can be verified directly (this is a part of the homework).
So, for a projective generator P of O0, we get EndO0(P ) = EndC[h]coW (V(P )).
Now let us compute V(∆(0)) and understand what the functor Pi looks like on the level

of C[h]coW -mod. Let C[h]si denote the subalgebra of all si-invariant polynomials in C[h].

Theorem 2.4. We have a functorial isomorphism V(Pi(M)) ∼= V(M)⊗C[h]siC[h]. Moreover,
V(∆(0)) ∼= C(= C[h]/(h)).

Note that C[h] is a graded C[h]si-module. So if V(M) is a graded C[h]coW -module, then
V(PiM) gets graded (as a tensor product of graded modules). So the object V(Pw) gets
graded. Moreover, P :=

⊕
w Pw (we take one reduced expression per w) is a projective

generator of O0 by Proposition 1.6.

Corollary 2.5. The algebra A := EndO0(P ) is graded.

Proof. By Theorem 2.3, we have A = EndC[h]coW (V(P )). The algebra C[h]coW is graded and
V(P ) admits a grading. So EndC[h]coW (V(P )) has a natural grading. �

2.3. Soergel modules and bimodules. Consider the C[h]-bimodule Bsi := C[h] ⊗C[h]si
C[h]. It is a graded bimodule (by the total degree), where, for convenience, we take deg h = 2.
For a sequence w := (si1 , . . . , sik) of simple reflections, we set Bw := Bsi1

⊗C[h] Bsi2
⊗C[h]

. . .⊗C[h] Bsik
. This is a so called Bott-Samelson C[h]-bimodule. Note that the left and right

C[h]W -module structures on Bw coincide.

Remark 2.6. The bimodules Bw have a geometric meaning. Let Pi, i = 1, . . . , n denote
the minimal parabolic subgroup of G corresponding to the simple root αi, its Lie algebra pi
equals b ⊕ Cfi. Consider the product Pi1 × . . . × Pik . On this product, the group Bk acts:
(b1, . . . , bk).(p1, . . . , pk) = (p1b

−1
1 , b1p2b

−1
2 , . . . , bk−1pkb

−1
k ). The quotient Pi1 × . . .× Pik/B

k is
a so called Bott-Samelson variety, to be denoted by BSw, since Pik/B

∼= P1, the variety BSw

is an iterated P1-bundle. Now suppose that w is a reduced expression of w. Note that we
have a natural morphism BSw → G/B (taking the product). One can show that the image is

the Schubert subvariety BwB/B and that the morphism we consider is actually a resolution
of singularities.

The group B still acts on BSw on the left and we can consider its equivariant cohomology
H∗

B(BSw). This is a module over H∗
B(G/B) = C[h] ⊗C[h]W C[h]. In fact, H∗

B(BSw) = Bw.

From here we deduce that H∗(BSw) = C⊗C[h] Bw, the module over H∗(G/B) = C[h]coW .

Definition 2.7. By a Soergel bimodule we mean any graded C[h]-bimodule that appears
as a graded direct summand of the bimodules of the form

⊕
w Bw{dw}, where dw ∈ Z is

a grading shift. A Soergel module is a graded direct summand in C ⊗C[h] B, where B is a
Soergel bimodule.
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The motivation is as follows. The Soergel modules are precisely the images of the pro-
jectives in O0 under the functor V. Taking the tensor product with Bsi corresponds to the
functor Pi. So we should view Soergel bimodules as graded analogs of the projective functors.

The following result of Soergel classifies the indecomposable Soergel (bi)modules.

Theorem 2.8. The indecomposable Soergel (bi)modules (up to a grading shift) are parame-
terized by W . More precisely, let w ∈ W , and w = (si1 , . . . , siℓ) give a reduced expression of
W . Then there is a unique indecomposable summand of Bw depending only on w that does
not occur in Bu, where ℓ(u) < ℓ. Further, a Soergel bimodule B is indecomposable if and
only if C⊗C[h] B is indecomposable.

The classification of the indecomposable Soergel modules can be deduced from their con-
nection to the projective objects in O. For bimodules, the claim is more complicated.

Example 2.9. Consider the bimodule Bs = C[h]⊗C[h]s C[h]. It is indecomposable. Indeed,
C ⊗C[h] Bs = C[h]/(C[h]s+) is indecomposable as a C[h]-module and the graded Nakayma
lemma implies that Bs is indecomposable. On the other hand, for W = S3, the bimodule
B(s,t,s) is not indecomposable, it is the direct sum of Bs and C[h] ⊗C[h]W C[h] with suitable
grading shifts, both summands are indecomposable.

2.4. Tensor structure and graded K0. By definition, BSw ⊗C[h] BSu = BSwu, where we
write wu for the concatenation of w and u. Because of this, Sbim is closed under taking
tensor products over C[h]. We write B ·B′ for B ⊗C[h] B

′.
The category Sbim is not abelian (it does not have kernels and cokernels). But it is

additive and is closed under taking direct summand. For such a category C, we can define
the split Grothendieck group, the quotient of the free group on the isomorphism classes of
objects by M = M ′ + M ′′ if M ∼= M ′ ⊕ M ′′. We still denote this group by K0(C) (for an
abelian category, the split Grothendieck group is huge and not useful at all, so this abuse of
notation does not harm) and write [M ] for a class of M . A basis in K0(C) is formed by the
(graded isomorphism classes of) indecomposable objects. Since we have the grading shifts
on Sbim, the group K0(Sbim) is a Z[q±1]-module. We can define a Z[q±1]-algebra structure
on K0(Sbim) by [B] · [B′] = [B ·B′].

The following result is due to Soergel (a.k.a. Soergel’s categorification theorem).

Theorem 2.10. We have a Z[q±1]-isomorphism K0(Sbim) ∼= Hq(W ) that sends [Bs] to
q−1Ts + q−2.

Sketch of proof. Both sides are free Z[q±1]-modules of rank |W |. So the only thing that
we need to prove is that q[Bs] − q−1 satisfies the relations for the elements Ts. We have
relations of two kinds: quadratic relations T 2

s = 1 + (q − q−1)Ts and the braid relations
TsTtTs . . . = TtTsTt . . .. The former are easy and we will check them, the latter are more
complicated (the case mst = 2 is still easy, the case of mst = 3 follows from Example 2.9).

What we need to check is an isomorphism Bs · Bs = Bs ⊕ Bs{−2}. This is easily reduced
to the case of sl2. There Bs = C[x]⊗C[x2] C[x] and

Bs · Bs = (C[x]⊗C[x2] C[x])⊗C[x] (C[x]⊗C[x2] C[x]) = C[x]⊗C[x2] C[x]⊗C[x2] C[x].

As a C[x2]-bimodule, C[x] decomposes as C[x2]⊕C[x2]{−2} (the second summand is xC[x2]
and, by our convention, deg x = 2). We conclude that Bs · Bs = Bs ⊕ Bs{−2}. �
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2.5. Kazhdan-Lusztig conjecture via Soergel bimodules. A reasonable question is
what are the classes of the indecomposable Soergel bimodules in Hq(W ). Let Bw denote the
indecomposable summand in BSw{ℓ(w)} that does not appear in BSu with ℓ(u) < ℓ(w). We
want to describe the classes of Bw (note that we have normalized the choice of grading).

It turns out that these classes are very closely related to the basis elements Cw. Namely,
we have a ring involution •∗ of Hq(W ) defined on the generators by Ts 7→ Ts, q 7→ −q−1 (this
clearly preserves the relations).

Theorem 2.11. We have [Bw] = C∗
w.

This theorem can be shown to imply the Kazhdan-Lusztig conjecture (and determines the
classes of [P (w · 0)] ∈ ZW = K0(O0)). It was first proved by Soergel (using the geometric
methods such as perverse sheaves). An alternative proof follows from the work of Elias and
Williamson, see [EW1], and also a survey [EW2]. The main new ingredient of that work is
a very clever emulation of Hodge theory in the context of Soergel bimodules.

3. Complements

3.1. Hecke algebras with unequal parameters. We have used the specialization of all
Hecke algebra parameters vs to q2. One can consider more general specializations: vs gets
specialized to q2L(s), where L : S → Z>0 is a function that is constant on the conjugacy classes
of reflections. The Kazhdan-Lusztig basis in the corresponding specialization is defined as
before. However, these bases are much more mysterious. For example, let P u

w(q) be the
coefficient of Tu in Cw. In the equal parameter case it is known that (−1)ℓ(w)−ℓ(u)P u

w(q) has
nonnegative coefficients. This is not known in general.

3.2. Multiplicities for algebraic groups. The Kazhdan-Lusztig basis in a suitable Hecke
algebra controls the characters of irreducible GF-modules L(λ), where GF is a semisimple
algebraic group over an algebraically closed field F of characteristic p, where p is very large
comparing to the rank of GF (the dimension of the maximal torus). The Hecke algebra is
taken for the affine Weyl group W aff = W nQ, where W is the Weyl group of G and Q is
the root lattice, i.e., the group in h∗ generated by the simple roots, compare to Problem 5
in Homework 2. We refer to Section 2 of [F] for details.
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