
SOME HECKE ALGEBRAS ASSOCIATED TO THE P-ADIC GROUP GL(V )
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1. Introduction

We focus on the special case G = GL(V ), where V is a vector space of dimension n over
a p-adic field k. But first, we recall a number of statements from the previous talk, with the
example G = GL(V ) in mind.

Let G be a locally compact, totally disconnected, Hausdorff topological group with a neigh-
borhood basis {Ki}i of the identity consisting of compact, open, normal subgroups. Often
K ⊂ G will denote a compact, open subgroup of G. We consider representations (ρ, V ) of G,
where V is often infinite-dimensional. We say the representation is smooth if V = ∪KV K , i.e.,
if every v ∈ V is fixed by some compact, open subgroup of G. We say the representation is
admissible if dimC(V K) <∞, for all open, compact subgroups K.

We consider the set C∞c (G) := {f : G→ C : f is locally constant and compactly supported}.
It is an associative algebra over C under convolution. The important property of this algebra
(sometimes denoted the Hecke algebra H(G)) is that there is an equivalence of categories be-
tween the smooth representations of G and the representations of H(G).

Once we recall how to obtain (ρ̃, V ) from (ρ, V ), we explain the connection between represen-
tations of H(G) generated by χK-fixed vectors and representations of H(G//K). We study the
structures of two particular Hecke algebras H(G//K),H(G//J), where G = GL(V ), K ⊂ G is
a maximal compact, open subgroup and J ⊂ G is the Iwahori subgroup of G.

2. Reminders about representations on H(G)

In this section, we consider the general scenario given in the intro. It admits unique, up to
scalars, left and right Haar measures. Any reductive p-adic group is unimodular, meaning that
they coincide. We call this measure µ.

Lemma 2.1. Let f ∈ H(G), then there is a compact open subgroup K < G such that f is right
K-invariant.

Proof. There is a neighborhood basis {xKi} of open, compact sets around x ∈ G. Since f is
locally constant, there is some xKx on which f is constant. Since f is compactly supported,
there is a compact C ⊆ G on which f is supported. For being compact, C is covered by finitely
many open sets xKx, let us say C ⊆

⋃
i xiKxi . The set K =

⋂
iKxi is clearly an open, compact

subgroup of G. One can check f is right K-invariant. �
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From the lemma, one can write an integration of f ∈ H(G//K) as a finite sum:∫
G
f(g)dg =

∑
x∈G/K

f(x)µ(K)(2.1)

where K is as in Lemma 2.1. The functor from the smooth representations of G to represen-
tations of H(G) is (ρ, V ) 7→ (ρ̃, V ), given by

ρ̃(f) · v :=

∫
G
f(g)ρ(g)vdg for all f ∈ H(G) and v ∈ V.(2.2)

This functor induces an equivalence between smooth representations of G and representations
of H(G). Moreover one can add some restrictions to both sides:

Proposition 2.2. Let (ρ, V ) be a smooth representation of G and (ρ̃, V ) be the induced repre-
sentation of H(G). Then the following statements hold.

(1) W ⊂ V is a subrepresentation of G if and only if W is ρ̃(f)-invariant for all f ∈ H(G).
(2) (ρ, V ) is admissible if and only if ρ̃(f) has finite rank for all f ∈ H(G).
(3) The representation (ρ, V ) is generated by its fixed K-vectors if and only if (ρ̃, V ) is

generated by its fixed χK-fixed vectors.

The Hecke algebra

H(G//K) = {f ∈ H(G) : f(kgk′) = f(g) for all g ∈ G; k, k′ ∈ K}(2.3)

is essential to the study of representations generated by χK-fixed vectors. The element χK is
zero outside of K, constant on K and such that

∫
G χKdg = 1. It satisfies

(1) χK ∗ χK = χK .
(2) For all f ∈ H(G), we have χK ∗ f = f if and only if f(kg) = f(g), for all k ∈ K.
(3) For all f ∈ H(G), we have f ∗ χK = f if and only if f(gk) = f(g), for all k ∈ K.

From (2) and (3) above, it follows that

H(G//K) = χK ∗ H(G) ∗ χK(2.4)

How do we relate irreducible representations of H(G) generated by χK fixed vector with those
irreducible representations of H(G//K)?

This relation holds in a more general case. If A is an associative algebra over C, and e ∈ A is an
idempotent, then eAe is a subalgebra of A. (think of A = H(G), e = χK and eAe = H(G//K)).
Let M(A) be the category of representations of A. Then there are natural induction and re-
striction functors r :M(A)→M(eAe), Y 7→ eY , and i :M(eAe)→M(A), Z 7→ Ae⊗eAe Z.

Furthermore, if we let Â be the irreducible representations of A andM(A, e) = {V ∈M(A) :
V = AeV } be the A-modules generated by e-fixed vectors, then under certain hypotheses (that

holds in our case A = H(G)), we have that r restricts to a bijection r : Â ∩M(A, e)
∼−→ êAe.

Thus, we see that to understand irreducible representations of G generated by K-fixed vectors,
one could study the irreducible representations of H(G//K). In what is left, we study the
structures of some of these Hecke algebras.
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3. Preliminaries in the structure of G = GL(V )

3.1. Lattice flags. Let k ⊇ Qp be a p-adic field, with p-adic norm || · ||p. The ring of integers
is O is the integral closure of Zp in k. One has that O = {a ∈ k : ||a||p ≤ 1} and O is an open,
compact subgroup of k. The ring of integers O is a DVR. Let m be its maximal ideal and π
be a uniformizing parameter. We call k = O/m the residue field of k, which is a finite field (if
k = Qn

p , O = Zn
p , then k = Zn

p/(pZp)
n ∼= Fpn). We let q be the size of k. Let V be a vector space

of dimension n over k. Then V is given a topology after identifying it with kn, space which has
the product topology || · ||np . This topology does not depend on the choice of basis.

Definition 3.1. A lattice Λ ⊂ V is a compact, open O-module.

Proposition 3.2. Any lattice Λ ⊂ V is isomorphic to On as an O-module.

We can say even more. If Λ is a lattice in V , then πΛ is also a lattice, it is contained in Λ, and
Λ = Λ/πΛ is a k = O/m-vector space. Assume that e1, . . . , en ∈ Λ are such that their images
e1, . . . , en in Λ = Λ/πΛ form a k-basis of Λ. From Nakayama’s lemma, e1, . . . , en spans Λ as
an O-module. From Proposition 3.2, e1, . . . , en is an O-basis of Λ. Now if v ∈ V is arbitrary,
there exists N ∈ N large enough such that πNv ∈ Λ. Then πNv =

∑n
j=1 βjej , for some βj ∈ O.

This implies v =
∑n

j=1 (π−Nβj)ej , with each π−Nβj ∈ k. Thus E = {ej}j=1,...,n spans V as a
k-vector space. It follows that E is also a k-basis of V . We summarize our discussion as

Proposition 3.3. Let Λ ⊂ V be a lattice, E = {ej}j=1,2,...,m ⊂ Λ and E = {ej}j=1,2,...,m ⊂ Λ =

Λ/πΛ be the set of images of ej in Λ. If E is a k-vector space for Λ, then E is an O-basis for
Λ and a k-basis for V .

The Iwahori-Bruhat decomposition (for G = GL(V )) to be proved later needs the definition
of “lattice flags” L, which will play the role of flags of subspaces.

Definition 3.4. A set L of lattices is a lattice flag if
(a) it is totally ordered by inclusion, and
(b) it is invariant under multiplication by k×.

Condition (b) can be reformulated. Let L be a lattice flag and Λ0 ∈ L. Let x = πnu ∈ k×,
where u ∈ O×. Then xΛ0 = πn(uΛ0) = πnΛ0, where the latter equality holds because Λ0 is an
O-module. Therefore (b) holds if and only if (b’) π±1Λ0 ∈ L whenever Λ0 ∈ L.

3.2. Stabilizers of lattices. For a lattice Λ ⊂ V , we let K(Λ) be the subgroup of GL(V )
consisting of automorphisms of Λ, i..e,

K(Λ) = {g ∈ GL(V ) : gΛ = Λ}(3.1)

Proposition 3.5. There is a unique conjugacy class of maximal compact subgroups of GL(V ),
consisting of the stabilizers K(Λ) of lattices Λ.

Proof. Choose a basis E = {ej}j=1,...,n ⊂ Λ, as in 3.3. In this basis, G = GLn(k) and
K(Λ) = GLn(O). It is not difficult to see that GLn(O) is an open, compact subset of GLn(k).
If Λ′ is another lattice, we can find g ∈ GL(V ) such that g(Λ) = Λ′. (For example, by choosing
E, resp. E′, to be O-bases of Λ, resp. Λ′, and k-bases of V , and g be the matrix of change of
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basis from E to E′.) It follows that K(Λ′) = gK(Λ)g−1, so K(Λ) and K(Λ′) are conjugate.

Let H be any compact subgroup of GL(V ). Since K(Λ) is open, H ∩K(Λ) has finite index
in H. Then the lattices {h(Λ) : h ∈ H} form a finite set. Therefore the sum of such lattices
Λ is again a lattice in V , and is clearly stabilized by H. Hence H ⊂ K(Λ), thus implying that
any maximal compact subgroup of GL(V ) is a stabilizer of a lattice. �

Corollary 3.6. If K is a maximal compact, open subgroup of G = GL(V ), then there exists a
basis of V such that G = GLn(k) and K = GLn(O).

Proof. From Proposition 3.5, there is a lattice Λ such that K = K(Λ). From proposition 3.3,
there is a set E = {e1, . . . , en} which is an O-basis of Λ and a k-basis of V . In terms of this
basis, we have V = kn and Λ = On. Therefore we have G = GLn(k) and K = GLn(O). �

4. Iwahori-Bruhat decomposition and structure of H(GL(V )//K)

Theorem 4.1. (Bruhat Decomposition) Let G be a reductive group, B a Borel subgroup
and W its Weyl group. Then G = BWB, or more precisely,

G =
∐
w∈W

BwB.

We give an equivalent statement: the Geometric Bruhat Decomposition. Both have analogues
in the p-adic case, where lattice flags replace flags. We consider line decompositions V =

⊕
j Lj ,

where each Lj is a 1-dimensional subspace of V . A line decomposition is said to be compatible
with a flag F = {0 = U0 ⊂ U1 ⊂ . . . ⊂ Uk = V } if Uj =

⊕
j (Lj ⊕ Ui) for all i > 0.

Proposition 4.2. GL(V ) = BWB if and only if for any two flags F1 and F2, there exists a
line decomposition of V compatible with both F1 and F2.

Proof. (=⇒) Let F1,F2 be two flags, that we can assume are maximal, and let B = StabGL(V )F1

and W = StabGL(V )F1, where F1 is a basis of V , compatible with F1. Let g ∈ GL(V ) be such
that g(F1) = F2. Since G = BWB, we write g = b1wb2. We claim that E = b1(F1) is a basis
of V compatible with both F1 and F2. Since b1 ∈ StabGL(V )F1, then E is compatible with F1.

We consider b1wb
−1
1 (E) = b1w(F1), which is just a reordering of the elements of E. But it also

equals gb−1
2 (F1) and since b−1

2 ∈ StabGL(V )F1, we have that b−1
2 (F1) is a basis of V , compatible

with F1, so gb−1
2 (F1) is a basis of V compatible with F2.

(⇐=) Let g ∈ GL(V ) be arbitrary and let F1 be a complete flag such that B = StabGL(V )F1.
Also let F1 be a compatible basis for F1, such that W = StabGL(V )F1. Set F2 := gF1 and
F2 := g(F1) be a compatible basis for F2. By assumption, there is a compatible basis E for both
F1 and F2. Now choose b1 ∈ B such that b1(F1) = E. Since E is compatible with F1 and F2,
we have that F1 = b−1

1 (E) is compatible with both b−1
1 F1 = F1 and b−1

1 F2 = b−1
1 g(F2) = F3.

As such F1 exists, then there is a permutation w ∈ W such that wF1 = F3, and it follows
that w−1b−1

1 g = b2 belongs to StabGL(V )F1 = B. It follows that g = b2wb1 ∈ BwB. Hence
GL(V ) = BWB. �

Corollary 4.3. (Geometric Bruhat Decomposition) If F1 and F2 are any two flags of V ,
then there is a line decomposition that is compactible with both F1 and F2.
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The lattice-analogue of the geometric Bruhat decomposition is:

Theorem 4.4. (Geometric Iwahori-Bruhat decomposition) If L and M are any two
lattice flags, then there is a line decomposition V = ⊕iLi compatible with both L and M.

Before sketching the proof of this theorem, we make the relation between lattice flags and
flags of subspaces more explicit.

Let L be any lattice flag and Λ0 ∈ L be arbitrary. If Λ′ ∈ L is any other element of L, then
πmΛ′ ⊂ Λ0 for sufficiently large m. If we choose the smallest m ∈ Z for which this holds, then
πm−1Λ′ does not belong to Λ0. As L is totally ordered by inclusion, then Λ0 ⊂ πm−1Λ′ =⇒
πΛ0 ⊂ πmΛ′ ⊂ Λ0. Thus reduction modulo πΛ0 attaches to πmΛ′ the subspace UΛ′ ⊂ Λ0 =
Λ0/πΛ0 of the k-vector space Λ0. It is clear that πmΛ′ can be recovered from UΛ′ as the unique
lattice containing πΛ0 and reducing to UΛ′ modulo πΛ0. If we have πmΛ′, all multiples of Λ′ can
also be recovered. Assume Λ′′ is any other lattice of L and πΛ0 ⊂ πpΛ′′ ⊂ Λ0. If πmΛ′ ⊂ πpΛ′′,
then it is not difficult to see that it corresponds to inclusions of subspaces UΛ′ ⊂ UΛ′′ of Λ0. So
the lattice flag L determines and is determined by a flag Λ0. Conversely, given a lattice Λ0 and
a flag {Ui} in Λ0 = Λ0/πΛ0, we can form lattices Λi such that πΛ0 ⊂ Λi ⊂ Λ0 and Λi/πΛ0 = Ui.
Then taking all multiples of πmΛi of these lattices, it is easy to see that we obtain a lattice flag.
Thus we conclude the following

Proposition 4.5. All lattice flags containing a given lattice Λ0 are in bijection with all flags of
subspaces in the k-vector space Λ0.

From the proposition, it follows that any lattice flag can be extended into a maximal one.
Also, in a maximal lattice flag, the quotient of consecutive lattices Λ′/Λ′′ is 1-dimensional/k.

Proof. (Sketch) Assume L and M are maximal flags. Select any Λ0 ∈ L. From above, L is
associated to a flag F(L) in Λ0 = Λ0/πΛ0. Now construct other flag in Λ0 as follows. Forr each

M ∈M, set M̃ = (M ∩ Λ0) + πΛ0, a lattice between Λ0 and πΛ0.
So each M defines a subspace U(M) of Λ0. For small M , U(M) = 0, while for large M ,

U(M) = Λ0. Successive quotients are 1-dimensional over k, so the subspaces {U(M)} define a
maximal flag G(M) in Λ0.

By the geometric Bruhat decomposition in GL(Λ0), we can find a basis {zj} compatible with

both F(L) and G(M). F is defined by lattices between Λ0 and πΛ0, so any lifts {zj} make a
line decomposition of V compatible with L.

Also, zj span U(M2)/U(M1) for successive quotients M1 ⊂M2. So M1 is the largest subspace
for which zj /∈ U(M1), and M2 is the smallest subspace for which zj ∈ U(M2). Thus we may lift
zj to some zj ∈M2. The claim is that the {zj} make the desired line decomposition. Checking
this is an exercise. �

Remark 4.6. There is an easier way to prove this theorem, by proving first the Cartan decom-
position of GL(V ) (see below) via Gauss elimination. The advantages of proof above is that it
is coordinate-free and that illustrates the relation between lattice flags and flags of subspaces.

The geometric version of the Iwahori-Bruhat decomposition also has a version where GL(V )
is decomposed. The Borel subgroup B is replaced by the stabilizer J = J(L) of the maximal
lattice flag L. If V = ⊕jLj is a line decomposition of V that is compatible with L, then let A
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be the group of transformations which stabilize all the lines and let W̃ = AW be the “affine
Weyl group” of transformations which stabilize the collection {Lj}j , then

GL(V ) = J(L)W̃J(L).(4.1)

From the Iwahori-Bruhat decomposition, the following Cartan decomposition

GL(V ) = K(Λ0)AK(Λ0) = KAK,(4.2)

where Λ0 is a lattice of L, is seen to be true. Under a suitable choice of basis for V , we have
GL(V ) = GLn(k), K(Λ0) = GLn(O), A is the subgroup of diagonal matrices in GLn(k) and J
is the subgroup of matrices in 

O× O · · · O

m
. . .

. . .
...

...
. . .

. . . O
m · · · m O×

 .

Theorem 4.7. If K is a maximal open, compact subgroup of GL(V ), then H(GL(V )//K) is
commutative.

Proof. We use an elementary technique of Gelfand: find an antiautomorphism of H(GL(V )//K)
that is the identity. First, fix a basis of V for which GL(V ) = GLn(k), K = GLn(O) and A are
the diagonal matrices in GLn(k).

In this basis, the transpose map t : GL(V ) → GL(V ) is an antiautomorphism that fixes K
and A. But since GL(V ) = KAK by the Cartan decomposition, then the transpose induces an

antiautomorphism of H(GL(V )//K), via f 7→ f̃ : f̃(g) = f(gt), it is the identity on GL(V ). �

Remark 4.8. It holds that H(G//K) ∼= k[x±1
1 , . . . , x±1

n ]Sn , from which commutativity is obvious.
This does not follow from this proof, but from a more refined decomposition of GL(V ).

5. Structure of H(GL(V )//J)

5.1. The extended affine Weyl group. For G = GL(V ), the Weyl group W is the group of
permutations Sn, generated by transpositions s1, . . . , sn−1, where si is the identity matrix with

i and i + 1 row switched. The extended affine Weyl group W̃ ◦ adds two additional generators
s0 and t, where

s0 =


0 π−1

1
. . .

1
π 0



t =


0 1

0 1
. . .

0 1
π 0

 .
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It is a group that contains all diagonal matrices whose entries are powers of π. The choice

of t is so that it normalizes the Iwahori subgroup J . One can then verify that W̃ ◦ is the group
presented as < s0, s1, . . . , sn−1, t|R >, where R is the set of relations

s2
i = 1 for all 0 ≤ i ≤ n− 1

(sisj)
mij = 1 where mi,i+1 = 3 and mij = 2 whenever |i− j| (mod n) > 1

tsjt
−1 = sj−1 for all 1 ≤ j ≤ n− 1

We define the length function on W̃ ◦ as the map l : W̃ ◦ −→ N that sends each w ∈ W̃ ◦ to
the minimum number of sj appearing in some expression of w.

Exercise: Verify that the Haar measure on (the unimodular group) GLn(k) can be normal-

ized so that µ(JwJ) = ql(w), for all w ∈ W̃ ◦.

5.2. Iwahori-Bruhat presentation. We now consider the basis fg = χJgJ , g ∈ J\G/J , of
H(G//J). The following lemma works for any compact, open subgroup of G, replacing J .

Lemma 5.1. If fx ∗ fy =
∑

z a
z
xyfz, then azxy ∈ Z, and

µ(JxJ)µ(JyJ) =
∑
z

azxyµ(JzJ).

Proof. As J is compact, and g−1Jg ∩ J is an open subgroup of J , then J/(g−1Jg ∩ J) is finite.
Write JgJ =

⋃m
i=1 kigJ , for ki ∈ J/(g−1Jg ∩ J). Then

fx = χJxJ =
∑
i

χxJ =
∑
i

δkix ∗ χJ

fy =
∑
j

δ
k̃jx
∗ χJ

Using that fy is left J-invariant (so that χJ ∗ fy = fy), we have

fx ∗ fy =
∑
i,j

δk1,xδk̃j ,y ∗ χJ

from which the first statement follows. The second statement follows from the first by integrating
over G using the Haar measure µ. �

Corollary 5.2. If µ(JxJ)µ(JyJ) = µ(JxyJ), then fx ∗ fy = fxy.

From the normalization µ(JwJ) = ql(w) and Corollary 5.2, it follows that fx ∗ fy = fxy,
whenever l(x) + l(y) = l(xy). There is one additional constraint f2

si = (q − 1)fsi + qf1, whose
verification is left as an exercise. These are all relations, as asserted by

Theorem 5.3. H(G//J) is the algebra generated by fsi, 0 ≤ i < n, and ft subject to

(1) fsi ∗ fsi = (q − 1)fsi + qf1.
(2) fsi ∗ fsj ∗ fsi ∗ ∗∗ = fsj ∗ fsi ∗ fsj ∗ ∗∗, for any i, j.
(3) ftfsi = fsi+1ft, for any 0 ≤ i < n.
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This presentation shows that the structure of H(GL(V )//J) is similar to that of a Coxeter

group, and allows us to see it as a deformation of W̃ ◦. However, it obscures the abelian subgroup

generated by fg, where g runs over the diagonal matrices within W̃ ◦. This is best seen if one
uses the Bernstein-Zelevinski presentation of H(GL(V )//J).

5.3. Bernstein-Zelevinski presentation. In the affine Weyl group W̃ ◦, we set

ak =


π−1

. . .

π−1

. . .

1

 ,

where the first k entries along the diagonal are π−1. They generate a free semigroup of

rank n inside W̃ ◦. It is easy to check that l(ak) = l(n − k). One can verify easily that
akskaksk = ak−1ak+1.

This implies akskak = ak−1ak+1sk. Both of these words are reduced and l(aksk) + l(ak) =
l(ak−1) + l(ak+1) + l(sk). Therefore

fakskfak = fak−1
fak+1

fsk(5.1)

is valid in H(G//J). Also, one has l(aksk) = l(ak)− 1, which implies

fak = fakskfsk .(5.2)

If we set

Tk = q−1/2fsk

yk = q−(n−2k+1)/2fakf
−1
k−1,

then equations 5.1 and 5.2 yield the following Bernstein-Zelevinski presentation ofH(GL(V )//J):

Tkyk − sk(yk)Tk = (q1/2 − q−1/2)
sk(yk)− yk
sk(yk)y−1

k − 1

Tkyj = yjTk for j 6= k, k + 1

yiyj = yjyi

TiTj = TjTi if |i− j| > 1

TkTk+1Tk Tk+1TkTk+1 for 1 ≤ k ≤ n− 1
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