SOME HECKE ALGEBRAS ASSOCIATED TO THE P-ADIC GROUP GL(V)

CESAR CUENCA

1. INTRODUCTION

We focus on the special case G = GL(V'), where V is a vector space of dimension n over
a p-adic field k. But first, we recall a number of statements from the previous talk, with the
example G = GL(V) in mind.

Let G be a locally compact, totally disconnected, Hausdorff topological group with a neigh-
borhood basis {K;}; of the identity consisting of compact, open, normal subgroups. Often
K C G will denote a compact, open subgroup of G. We consider representations (p, V) of G,
where V is often infinite-dimensional. We say the representation is smooth if V = UgVE | i.e.,
if every v € V is fixed by some compact, open subgroup of G. We say the representation is
admissible if dimc (V) < oo, for all open, compact subgroups K.

We consider the set C2°(G) := {f : G — C: f is locally constant and compactly supported}.
It is an associative algebra over C under convolution. The important property of this algebra
(sometimes denoted the Hecke algebra H(G)) is that there is an equivalence of categories be-
tween the smooth representations of G and the representations of H(G).

Once we recall how to obtain (p, V') from (p, V'), we explain the connection between represen-
tations of H(G) generated by yx-fixed vectors and representations of H(G//K). We study the
structures of two particular Hecke algebras H(G//K),H(G//J), where G = GL(V), K C G is
a maximal compact, open subgroup and J C G is the Twahori subgroup of G.

2. REMINDERS ABOUT REPRESENTATIONS ON H(G)

In this section, we consider the general scenario given in the intro. It admits unique, up to
scalars, left and right Haar measures. Any reductive p-adic group is unimodular, meaning that
they coincide. We call this measure u.

Lemma 2.1. Let f € H(G), then there is a compact open subgroup K < G such that f is right
K-invariant.

Proof. There is a neighborhood basis {zK;} of open, compact sets around = € G. Since f is
locally constant, there is some /K, on which f is constant. Since f is compactly supported,
there is a compact C C G on which f is supported. For being compact, C is covered by finitely
many open sets £ K, let us say C' C | J; z;K;,. The set K =), K, is clearly an open, compact
subgroup of G. One can check f is right K-invariant. O
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From the lemma, one can write an integration of f € H(G//K) as a finite sum:

(2.1) /G foyg= 3 F@)u(K)

zeG/K

where K is as in Lemma The functor from the smooth representations of G to represen-
tations of H(G) is (p, V) — V) given by

(2.2) ) —/ f(g)p(g)vdg for all f € H(G) and v € V.

This functor induces an equivalence between smooth representations of G and representations
of H(G). Moreover one can add some restrictions to both sides:

Proposition 2.2. Let (p, V) be a smooth representation of G and (p,V') be the induced repre-
sentation of H(G). Then the following statements hold.

(1) W C V is a subrepresentation of G if and only if W is p(f)-invariant for all f € H(G).

(2) (p,V) is admissible if and only if p(f) has finite rank for all f € H(G).

(3) The representation (p,V') is generated by its fized K-vectors if and only if (p,V) is
generated by its fixed x i -fixed vectors.

The Hecke algebra
(2.3) H(G//K) ={f € H(G) : f(kgk') = f(g) for all g € G; k., k' € K}

is essential to the study of representations generated by xg-fixed vectors. The element x g is
zero outside of K, constant on K and such that fG xrxdg = 1. It satisfies

(1) XK * XK = XK.

(2) For all f € H(G), we have xx * f = f if and only if f(kg) = f(g), for all k € K.

(3) For all f € H(G), we have f * xx = f if and only if f(gk) = f(g), for all k € K.

From (2) and (3) above, it follows that
(2.4) H(G//K) = xx * H(G) * Xk

How do we relate irreducible representations of H(G) generated by xx fixed vector with those
irreducible representations of H(G//K)?

This relation holds in a more general case. If A is an associative algebra over C, and e € A is an
idempotent, then eAe is a subalgebra of A. (think of A = H(G), e = xk and ede = H(G//K)).
Let M(A) be the category of representations of A. Then there are natural induction and re-
striction functors r : M(A) — M(ede), Y — €Y, and i : M(ede) - M(A), Z — Ae Recac Z.

Furthermore, if we let A be the irreducible representations of A and M(4,e) = {V € M(A) :
V = AeV'} be the A-modules generated by e-fixed vectors, then under certain hypotheses (that

holds in our case A = H(G)), we have that r restricts to a bijection 7 : A N M(A,e) = ede.

Thus, we see that to understand irreducible representations of G generated by K-fixed vectors,
one could study the irreducible representations of H(G//K). In what is left, we study the
structures of some of these Hecke algebras.
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3. PRELIMINARIES IN THE STRUCTURE OF G = GL(V)

3.1. Lattice flags. Let k D Q, be a p-adic field, with p-adic norm || - ||,. The ring of integers
is O is the integral closure of Z, in k. One has that O = {a € k : ||a||, < 1} and O is an open,
compact subgroup of k. The ring of integers O is a DVR. Let m be its maximal ideal and 7
be a uniformizing parameter. We call & = O/m the residue field of k, which is a finite field (if
k=Qp, O =7y, then k= Ly [ (pZp)"™ = Fyn). We let g be the size of k. Let V be a vector space
of dimension n over k. Then V is given a topology after identifying it with k", space which has

the product topology || - [|;. This topology does not depend on the choice of basis.
Definition 3.1. A lattice A C V is a compact, open O-module.
Proposition 3.2. Any lattice A C V is isomorphic to O™ as an O-module.

We can say even more. If A is a lattice in V', then wA is also a lattice, it is contained in A, and
A = A/7A is a k = O/m-vector space. Assume that ej,...,e, € A are such that their images
€1,...,6, in A = A/mwA form a k-basis of A. From Nakayama’s lemma, ej,...,e, spans A as
an O-module. From Proposition [3.2] e1,...,e, is an O-basis of A. Now if v € V is arbitrary,
there exists N € N large enough such that 7¥v € A. Then 7¥v = Z?Zl Bjej, for some 3; € O.

This implies v = 377, (7N Bj)ej, with each 7=V B; € k. Thus E = {e;}j—1,..n spans V as a
k-vector space. It follows that E is also a k-basis of V. We summarize our discussion as
Proposition 3.3. Let A C V be a lattice, E = {e;}j=12,..m C A and E= {€i}tj=12,.m C A=
A/ be the set of images of e in A. If E is a k-vector space for A, then E is an O-basis for
A and a k-basis for V.

The Iwahori-Bruhat decomposition (for G = GL(V')) to be proved later needs the definition
of “lattice flags” £, which will play the role of flags of subspaces.

Definition 3.4. A set L of lattices is a lattice flag if
(a) it is totally ordered by inclusion, and
(b) it is invariant under multiplication by k*.

Condition (b) can be reformulated. Let £ be a lattice flag and Ay € L. Let x = n"u € k*,
where u € O*. Then Ay = 7" (ulp) = 7™ Ag, where the latter equality holds because Ag is an
O-module. Therefore (b) holds if and only if (b’) 7*'Ag € £ whenever A € L.

3.2. Stabilizers of lattices. For a lattice A C V, we let K(A) be the subgroup of GL(V)
consisting of automorphisms of A, i..e,

(3.1) K(A) = {g € GL(V) : gA = A}

Proposition 3.5. There is a unique conjugacy class of mazimal compact subgroups of GL(V'),
consisting of the stabilizers K(A) of lattices A.

Proof. Choose a basis E = {ej}j=1,.n, C A, as in In this basis, G = GL,(k) and
K(A) = GL,(0O). It is not difficult to see that GL,(O) is an open, compact subset of G L, (k).
If A’ is another lattice, we can find g € GL(V) such that g(A) = A’. (For example, by choosing
E, resp. E', to be O-bases of A, resp. A’, and k-bases of V, and g be the matrix of change of



4 CESAR CUENCA

basis from E to E'.) It follows that K (A') = gK(A)g~', so K(A) and K(A’) are conjugate.

Let H be any compact subgroup of GL(V). Since K (A) is open, H N K(A) has finite index
in H. Then the lattices {h(A) : h € H} form a finite set. Therefore the sum of such lattices
A is again a lattice in V, and is clearly stabilized by H. Hence H C K(A), thus implying that
any maximal compact subgroup of GL(V) is a stabilizer of a lattice. g

Corollary 3.6. If K is a maximal compact, open subgroup of G = GL(V), then there exists a
basis of V' such that G = GLy(k) and K = GL,(0O).

Proof. From Proposition there is a lattice A such that K = K(A). From proposition
there is a set E = {eq,...,e,} which is an O-basis of A and a k-basis of V. In terms of this
basis, we have V = k™ and A = O". Therefore we have G = GL,(k) and K = GL,(O). O

4. TWAHORI-BRUHAT DECOMPOSITION AND STRUCTURE OF H(GL(V)//K)

Theorem 4.1. (Bruhat Decomposition) Let G be a reductive group, B a Borel subgroup
and W its Weyl group. Then G = BW B, or more precisely,

G = ]_[ BuwB.
weW

We give an equivalent statement: the Geometric Bruhat Decomposition. Both have analogues
in the p-adic case, where lattice flags replace flags. We consider line decompositions V- = &P i Lijs
where each L; is a 1-dimensional subspace of V. A line decomposition is said to be compatible
withaﬂag]::{():UOCUl C ...CUk:V} iij:@j(Lj@Ui) for all 4 > 0.

Proposition 4.2. GL(V) = BW B if and only if for any two flags F1 and Fa, there exists a
line decomposition of V' compatible with both F1 and Fs.

Proof. (=) Let F1, F2 be two flags, that we can assume are maximal, and let B = Stabg,v)F1
and W = Stabg vy F1, where Fy is a basis of V, compatible with 7;. Let g € GL(V') be such
that g(F1) = F2. Since G = BW B, we write g = bywba. We claim that E = b (F}) is a basis
of V' compatible with both F; and F». Since b; € Stabg L(V)]:h then FE is compatible with Fj.
We consider bywb; ' (E) = byw(F}), which is just a reordering of the elements of E. But it also
equals gby 1(F1) and since b, Le Stabg L(v)F1, we have that by 1(F1) is a basis of V', compatible
with Fi, so gby '(F1) is a basis of V' compatible with Fs.

(=) Let g € GL(V') be arbitrary and let 71 be a complete flag such that B = Stabgr,v)F1-
Also let Fy be a compatible basis for Fi, such that W = Stabgr)F1. Set F2 := gF1 and
F5 := g(F1) be a compatible basis for F». By assumption, there is a compatible basis E for both
F1 and Fy. Now choose by € B such that by (Fy) = E. Since E is compatible with F; and Fo,
we have that Fy = by '(F) is compatible with both by ' F; = F; and by ' Fp = by lg(F) = Fs.
As such F} exists, then there is a permutation w € W such that wF; = F3, and it follows
that wilbl_lg = by belongs to Stabgr)F1 = B. It follows that g = bywby € BwB. Hence
GL(V) = BWB. O

Corollary 4.3. (Geometric Bruhat Decomposition) If 1 and Fa are any two flags of V,
then there is a line decomposition that is compactible with both F1 and F3.
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The lattice-analogue of the geometric Bruhat decomposition is:

Theorem 4.4. (Geometric Iwahori-Bruhat decomposition) If £ and M are any two
lattice flags, then there is a line decomposition V = @®;L; compatible with both L and M.

Before sketching the proof of this theorem, we make the relation between lattice flags and
flags of subspaces more explicit.

Let £ be any lattice flag and Ag € £ be arbitrary. If A’ € £ is any other element of £, then
™A C Ag for sufficiently large m. If we choose the smallest m € Z for which this holds, then
7™~ 1A’ does not belong to Ag. As L is totally ordered by inclusion, then Ag C 7™ 1A —
7Ag C mA’ C Ag. Thus reduction modulo 7Aq attaches to 7™A’ the subspace Uynr C Ag =
Ao/mAg of the k-vector space Ag. It is clear that 7™A’ can be recovered from Uy as the unique
lattice containing wAy and reducing to Uy modulo wAg. If we have 7”*A’, all multiples of A’ can
also be recovered. Assume A” is any other lattice of £ and 7Ag C 7PA” C Ag. If 7™A C 7PA”,
then it is not difficult to see that it corresponds to inclusions of subspaces Upys C Up» of Ag. So
the lattice flag £ determines and is determined by a flag Ag. Conversely, given a lattice Ag and
aflag {U;} in Ag = Ag/mAg, we can form lattices A; such that tAg C A; C Ag and A;/7Ag = U;.
Then taking all multiples of 7™ A; of these lattices, it is easy to see that we obtain a lattice flag.
Thus we conclude the following

Proposition 4.5. All lattice flags containing a given lattice Ao are in bijection with all flags of
subspaces in the k-vector space Ag.

From the proposition, it follows that any lattice flag can be extended into a maximal one.
Also, in a maximal lattice flag, the quotient of consecutive lattices A’/A” is 1-dimensional /k.

Proof. (Sketch) Assume £ and M are maximal flags. Select any Ag € £. From above, L is
associated to a flag F(£) in Ag = Ag/mAg. Now construct other flag in Ag as follows. Forr each
M e M, set M = (M N Ag) + 7wy, a lattice between Ay and wAy.

So each M defines a subspace U(M) of Ag. For small M, U(M) = 0, while for large M,
U(M) = Ag. Successive quotients are 1-dimensional over k, so the subspaces {U (M)} define a
maximal flag G(M) in Ay.

By the geometric Bruhat decomposition in GL(Ag), we can find a basis {z;} compatible with
both F(L£) and G(M). F is defined by lattices between Ag and 7Ag, so any lifts {z;} make a
line decomposition of V' compatible with L.

Also, Z; span U (M) /U (M) for successive quotients My C M. So M; is the largest subspace
for which z; ¢ U(M), and M is the smallest subspace for which zZ; € U(Mz). Thus we may lift
Zj to some z; € My. The claim is that the {z;} make the desired line decomposition. Checking
this is an exercise. ]

Remark 4.6. There is an easier way to prove this theorem, by proving first the Cartan decom-
position of GL(V') (see below) via Gauss elimination. The advantages of proof above is that it
is coordinate-free and that illustrates the relation between lattice flags and flags of subspaces.

The geometric version of the Iwahori-Bruhat decomposition also has a version where GL(V)
is decomposed. The Borel subgroup B is replaced by the stabilizer J = J(L£) of the maximal
lattice flag £. If V' = @®;L; is a line decomposition of V' that is compatible with £, then let A
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be the group of transformations which stabilize all the lines and let W = AW be the “affine
Weyl group” of transformations which stabilize the collection {L;};, then

(4.1) GL(V) = J(L)YWJ(L).
From the Iwahori-Bruhat decomposition, the following Cartan decomposition
(4.2) GL(V) = K(Ag)AK(A\y) = KAK,

where Ag is a lattice of L, is seen to be true. Under a suitable choice of basis for V, we have
GL(V) = GLy(k), K(Ag) = GL,(O), A is the subgroup of diagonal matrices in GL, (k) and J
is the subgroup of matrices in

ox O .. 0O
m

: (@)
m ... m OX

Theorem 4.7. If K is a mazimal open, compact subgroup of GL(V'), then H(GL(V)//K) is
commutative.

Proof. We use an elementary technique of Gelfand: find an antiautomorphism of H(GL(V)//K)
that is the identity. First, fix a basis of V for which GL(V) = GL,,(k), K = GL,(O) and A are
the diagonal matrices in G L, (k).

In this basis, the transpose map ' : GL(V) — GL(V) is an antiautomorphism that fixes K
and A. But since GL(V) = KAK by the Cartan decomposition, then the transpose induces an

antiautomorphism of H(GL(V)//K), via f — f : f(g) = f(g"), it is the identity on GL(V). O

Remark 4.8. Tt holds that #(G//K) = k[zT!, ..., 2% from which commutativity is obvious.

This does not follow from this proof, but from a more refined decomposition of GL(V).

5. STRUCTURE OF H(GL(V)//J)

5.1. The extended affine Weyl group. For G = GL(V'), the Weyl group W is the group of
permutations Sy, generated by transpositions sy, ..., s,—_1, where s; is the identity matrix with

1 and 7 + 1 row switched. The extended affine Weyl group W° adds two additional generators
sp and t, where

0 a1

So —

o A
O =
—_
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It is a group that contains all diagonal matrices whose entries are powers of 7. The choice
of ¢ is so that it normalizes the Iwahori subgroup J. One can then verify that W° is the group

presented as < sg, S1,...,Sp—1,t|R >, where R is the set of relations
s? = lforall0<i<n-1
(sisj)™4 = 1 where m;;4+1 = 3 and m;; = 2 whenever | — j| (mod n) > 1
tsjtfl = sjqforalll1<j<n—-1

We define the length function on W° as the map [ : W° —» N that sends each w € W° to
the minimum number of s; appearing in some expression of w.

Exercise: Verify that the Haar measure on (the unimodular group) GL,, (k) can be normal-
ized so that p(JwJ) = ¢'™), for all w € W°.

5.2. Iwahori-Bruhat presentation. We now consider the basis f; = x4, 9 € J\G/J, of
H(G//J). The following lemma works for any compact, open subgroup of G, replacing J.

Lemma 5.1. If fo* f, = > __a;, f., then a}, € Z, and

w(Jz ) pu(JyJ) = Zaxyu (JzJ).

Proof. As J is compact, and g~'.Jg N J is an open subgroup of J, then .J/(g~'1Jg N J) is finite.
Write JgJ = |J% kigJ, for k; € J/(g~'Jg N J). Then

fo=Xiws = > Xed =D Onaxxu
i i
fy = Z 5’;;jm *XJ
J
Using that f, is left J-invariant (so that x;* f, = fy), we have
fr * fy = Zékl’xézj,y * XJ
lh]

from which the first statement follows. The second statement follows from the first by integrating
over GG using the Haar measure pu. U

Corollary 5.2. If p(JzJ)u(JyJ) = p(JxyJ), then fo % fy = fay.

From the normalization u(JwJ) = ¢! and Corollary it follows that f, x fy, = fuy,
whenever I(z) + (y) = l(xy). There is one additional constraint f2 = (¢ — 1)fs, + ¢f1, whose
verification is left as an exercise. These are all relations, as asserted by

Theorem 5.3. H(G//J) is the algebra generated by fs,, 0 < i <n, and f; subject to

(2) foi * fs; * fs; x 0% = fo, % fo, % fs; % %%, for any i, j.
(3) fifs; = fsur i, for any 0 <i < n.
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This presentation shows that the structure of H(GL(V')//J) is similar to that of a Coxeter
group, and allows us to see it as a deformation of W°. However, it obscures the abelian subgroup

generated by fg, where g runs over the diagonal matrices within We°. This is best seen if one
uses the Bernstein-Zelevinski presentation of H(GL(V)//J).

5.3. Bernstein-Zelevinski presentation. In the affine Weyl group WO, we set
a1

ajp = 7'(' )

1
where the first k entries along the diagonal are m~ They generate a free semigroup of
rank n inside W°. It is easy to check that I(ay) = I(n — k). One can verify easily that
(g SpakSk = Qk—10k41-

1

This implies agspar = agp_1ax+18x. Both of these words are reduced and I(axsi) + l(ag) =
l(ag—1) + l(ags+1) + U(sk). Therefore

(51) fakskf(lk = fak,1 fak+1fsk
is valid in H(G//J). Also, one has l(axsy) = l(ax) — 1, which implies
(52) fak = fakskfsk-

If we set

Tk = q_l/Qf Sk

g, = ¢ "HED2p g1
then equations[5.1]and[5.2]yield the following Bernstein-Zelevinski presentation of H(GL(V)//J):
12 _ =172y Sk WK — Y

Tryr — sk(ye)Te = (q —
se(yr)y, ' — 1
Try; = yjIy for j #k k+1
YiYi = YjYi
TT; = T |i—j| > 1
T3 Tysr T Toi1 T Tpsr for 1 <k <n—1
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