CRYSTALS

HUIJUN ZHAO

In these notes we introduce the crystal structures of modules over Kac-Moody algebras obtained from Berenstein-Kazhdan perfect bases, especially on the complexified Grothendieck groups of type A Kac-Moody categorifications.

In Section 1 we describe the structure of simple objects in an \mathfrak{sl}_2 -categorification. In Section 2, we introduce the Berenstein-Kazhdan perfect bases of integrable highest weight representations of a Kac-Moody algebra. Finally in Section 3, we apply what we have in the first two sections to the example of categorical \mathfrak{sl}_{l} -action on modules over cyclotomic Hecke algebras, and conclude that this is a categorification of an irreducible \mathfrak{sl}_l -module.

1. Simple objects in an \mathfrak{sl}_2 -categorification

1.1. Reminder and notation. Let \mathcal{C} be a general artinian and noetherian \mathbb{F} -linear abelian category equipped with a categorical \mathfrak{sl}_2 -action given by the endofunctors E and F, the parameter $q \in \mathbb{F}^{\times}$ and $a \in \mathbb{F}$, where $a \neq 0$ if $q \neq 1$, and $L \in \text{End}(E), T \in \text{End}(E^2)$. We adopt some notation from [Si] and [CR]:

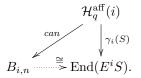
- Let $[\mathcal{C}] = K_0(\mathcal{C}) \otimes \mathbb{C}$ denote the complexified Grothendieck group of \mathcal{C} and $\mathcal{H}_q^{\text{aff}}(n)$ denote the affine Hecke algebra generated by $X_1, \dots, X_n, T_1, \dots, T_{n-1}$ subject to the Hecke relations.
- For some $U \in C$, denote $h_+(U) := \max\{j : E^j U \neq 0\}, h_-(U) := \max\{j : F^j U \neq 0\}$, and $d(U) := h_+(U) + (U) +$ $h_{-}(U) + 1$. Also, denote the *socle* of U by soc(U), which is the maximal semisimple subobject of U in C, and the *head* by head(U), which is the maximal semisimple quotient.
- E⁽ⁱ⁾, F⁽ⁱ⁾ denote the categorified divided powers.
 Let m_n ⊆ P_n := F[X₁[±],...,X_n[±]] be the ideal generated by (X_i − a), i = 1,...,n. Let n_n := m_n^{G_n} ⊆ H_q^{aff}(n). Let N_n be the category of H_q^{aff}(n)-modules with locally nilpotent n_n-action. Since n_n is contained in the center of $\mathcal{H}_q^{\mathrm{aff}}(n)$, the quotient $\overline{\mathcal{H}(n)} = \mathcal{H}_q^{\mathrm{aff}}(n)/\mathfrak{n}_n \mathcal{H}_q^{\mathrm{aff}}(n)$ is an algebra. For $0 \leq i \leq n$, denote by $B_{i,n}$ the image of the subalgebra $\mathcal{H}_q^{\mathrm{aff}}(i)$ inside $\overline{\mathcal{H}(n)}$. Define the Kato modules $K_n := \mathcal{H}_q^{\mathrm{aff}}(n) \otimes_{P_n} P_n/\mathfrak{m}_n \cong (\mathcal{H}_q^{\mathrm{aff}}(n)/\mathfrak{n}_n)c_n^{\tau}$ to be the unique simple module in \mathcal{N}_n , where $c_n^{\tau} = \sum_{w \in \mathfrak{S}_n} q^{-\ell(w)} \tau(T_w) T_w^{\tau}$ for $\tau \in \{\text{triv}, \text{sign}\}.$
- As in [Si, Proposition 3.3], for any $U \in \mathcal{C}$ and n > 0, $E^n(U)$ has a natural left $\mathcal{H}_q^{\text{aff}}(n)$ -module structure. It induces a morphism $\gamma_n : \mathcal{H}_q^{\mathrm{aff}}(n) \to \mathrm{End}(E^n)$ defined by $T_i \mapsto \mathbf{1}_{E^{n-i-1}}T\mathbf{1}_{E^{i-1}}$ and $X_j \mapsto \mathbf{1}_{E^{n-i}}L\mathbf{1}_{E^{i-1}}$.
- Given $d \ge 0$, let $\mathcal{C}^{\le d}$ be the full Serre subcategory of \mathcal{C} consisting of all simple objects S such that $d(S) \le d$. Let $[\mathcal{C}]^{\leq d}$ be the maximal submodule of $[\mathcal{C}]$ containing all modules of dimension $\leq d$. Clearly $[\mathcal{C}^{\leq d}] \subset [\mathcal{C}]^{\leq d}$. In fact this is an equality.

1.2. Simples in \mathcal{C} . In this subsection, we focus on the categorical action of E and F on a simple object S in \mathcal{C} . In general, ES and FS (or more generally, $E^{(i)}S$ and $F^{(i)}S$) are not necessarily simple, but their socles and heads are. Also we prove some results describing $\operatorname{End}(E^{(i)}S)$.

The following result is due to Chuang-Rouquier [CR, Prosition 5.20].

Proposition 1.1. Let S be a simple object of C, and let $n = h_+(S)$. Then, for every $i \leq n$:

- (a) The object $E^{(n)}S$ is simple.
- (b) The socle and the head of $E^{(i)}S$ are isomorphic to a simple object S' of C. We have $\mathcal{H}_{a}^{\mathrm{aff}}(i)$ -equivariant *C*-isomorphisms: $soc(E^i S) \cong head(E^i S) \cong S' \otimes K_i$.
- (c) The canonical homomorphism $\gamma_i(S) : \mathcal{H}_q^{\mathrm{aff}}(i) \to \mathrm{End}_{\mathcal{C}}(E^iS)$ factors through $B_{i,n}$. Moreover, it induces an isomorphism $B_{i,n} \xrightarrow{\cong} \operatorname{End}_{\mathcal{C}}(E^i S).$



(d) We have $[E^{(i)}(S)] - \binom{n}{i}[S'] \in [\mathcal{C}]^{\leq d(S')-1}$.

The corresponding statements with E replaced by F and $h_+(S)$ by $h_-(S)$ hold as well.

To prove the proposition, we need the following two lemmas.

Lemma 1.2. Let M be an object of C. If $d(S) \ge r$ for any simple subobject (resp. quotient) S of M, then $d(S') \ge r$ for any simple subobject (resp. quotient) of EM or FM.

Proof. By the weight decomposition of C ([Si, Proposition 3.5]), it is enough to consider the case where M lies in a single weight space. Let T be a simple submodule of EM, by adjunction, $\operatorname{Hom}(FT, M) \cong \operatorname{Hom}(T, EM) \neq 0$. So there exists S being a simple subobject of M that is a composition factor of FT. Hence, $d(T) \ge d(FT) \ge d(S) \ge r$. The proofs for FM and simple quotients are similar.

For $1 \leq i \leq j \leq n$, denote by $\mathfrak{S}_{[i,j]}$ the symmetric group on $[i,j] = \{i, i+1, \cdots, j\}$. We define similarly $\mathcal{H}_q^{\mathrm{aff}}([i,j])$ and $\overline{\mathcal{H}([i,j])}$ and we put $c_{[i,j]}^{\tau} = \sum_{w \in \mathfrak{S}_{[i,j]}} q^{-\ell(w)} \tau(T_w) T_w$.

Lemma 1.3. The $\mathcal{H}_q^{\mathrm{aff}}(i)$ -module $c_{[i+1,n]}^{\tau}K_n$ has a simple socle and head.

Proof. See [CR, Lemma 3.6], or [Ven, Theorem 5.10].

Proof of Proposition 1.1. The proof is in several steps.

Step 1. (a) holds when FS = 0. Since [E], [F] define an \mathfrak{sl}_2 -action on $[\mathcal{C}]$, $[F^{(n)}E^{(n)}S] = r[S]$ for some $r \in \mathbb{Z}_{>0}$. By adjointness, $\operatorname{Hom}(F^{(n)}E^{(n)}S,S) = \operatorname{Hom}(E^{(n)}S,E^{(n)}S) \neq 0$. So there exists a nonzero homomorphism $F^{(n)}E^{(n)}S \to S$, hence an isomorphism. Then $F^{(n)}E^{(n)}S \cong S$. If $E^{(n)}S$ has at least two composition factors, then by weight consideration, $F^{(n)}E^{(n)}S$ also has at least two composition factors, and thus cannot be simple. So $E^{(n)}S = S'$ must be simple.

Step 2. (a) holds in general. Let L be a simple quotient of $F^{(r)}S$, where $r = h_{-}(S)$. Note that, by our choice of r, FL = 0 so, by Step 1, $E^{(n+r)}L = T$ is simple and $E^{(n)}E^{(r)}L = \binom{n+r}{r}T$. By adjunction, we have that $\operatorname{Hom}(S, E^{(r)}L) \cong \operatorname{Hom}(F^{(r)}S, L) \neq 0$, so S must be a subobject of $E^{(r)}L$. It follows that $E^{(n)}S$ must be a subobject of $\binom{n+r}{r}T$. So $E^{(n)}S = mT$ for some m > 0. Clearly, $m = \dim \operatorname{Hom}(E^{(n)}S, T) = \dim \operatorname{Hom}(S, F^{(n)}T)$. But ET = 0, so by Step 1 (with E and F swapped) $\operatorname{soc}(F^{(n)}T)$ is simple. Thus, m = 1.

Step 3. (b) holds whenever (a) does. Clearly, (b) holds when i = n. But let us observe a bit more. We have $E^n S = n!S'$ for some simple module S'. Thus, $E^n S = S' \otimes R$ for some left $\mathcal{H}_q^{\text{aff}}(n)$ -module R in \mathcal{N}_n . Since $\dim R = n! = \dim K_n$, we must have $R = K_n$.

For i < n we have, using exactness of E and the above paragraph, that $E^{n-i} \operatorname{soc}(E^{(i)}S) \subseteq E^{n-i}E^{(i)}S \cong S'' \otimes K_n c_i^1$. The $\mathcal{H}_q^{\operatorname{aff}}(n-i)$ -module $K_n c_i^1$ has a simple head and socle, (Lemma 1.3), so the same is true for $S'' \otimes K_n c_i^\tau$ (as a $\mathcal{H}_q^{\operatorname{aff}}(n-i)$ -module in \mathcal{C}). It follows that $E^{n-i} \operatorname{soc}(E^{(i)}S)$ is indecomposable as a $\mathcal{H}_q^{\operatorname{aff}}(n-i)$ -module in \mathcal{C} . Now, if S' is a nonzero summand of $\operatorname{soc}(E^{(i)}S)$, then $E^{n-i}S' \neq 0$ (Lemma 1.2). So $\operatorname{soc}(E^{(i)}S)$ has no more than one summand and hence must be simple. We have $\operatorname{soc}(E^{i}S) \cong S' \otimes R$ for some $\mathcal{H}_q^{\operatorname{aff}}(i)$ -module R in \mathcal{N}_i . Since dim R = i!, it follows that $R \cong K_i$. $\operatorname{soc}(E^{(i)}S) = S'$. The proof for the head being simple is similar. It remains to show that the head and the socle are isomorphic.

Step 4. Estimating the dimension of $\operatorname{End}(E^iS)$. Since $S' = \operatorname{soc}(E^{(i)}S)$ is simple, the dimension of $\operatorname{Hom}(M, E^{(i)}S)$ is at most the multiplicity of S' in M. Taking $M = E^{(i)}S$, we get that the dimension of $\operatorname{End}(E^{(i)}S)$ is at most the multiplicity of S' in $E^{(i)}S$. Since $E^{(n-i)}S' \neq 0$, we have that the dimension of $\operatorname{End}(E^{(i)}S)$ is at most the number of composition factors of $E^{(n-i)}E^{(i)}S$. But $E^{(n-i)}E^{(i)}S = \binom{n}{i}S''$. Thus, $\dim(\operatorname{End}(E^{(i)}S)) \leq \binom{n}{i}$. Since $E^{i}S = i!E^{(i)}S$, it follows that $\dim \operatorname{End}(E^{i}S) \leq (i!)^{2}\binom{n}{i} = \dim B_{i,n}$.

Step 5. (c) holds whenever (a) holds. $\ker \gamma_n(S) \subseteq \mathfrak{n}_n \mathcal{H}_q^{\operatorname{aff}}(n)$ since the former is a proper ideal and the latter is a maximal ideal of $\mathcal{H}_q^{\operatorname{aff}}(n)$. For i < n, we have that $\ker \gamma_i(S) \subseteq \mathcal{H}_q^{\operatorname{aff}}(i) \cap \ker \gamma_n(S) \subseteq \mathcal{H}_q^{\operatorname{aff}}(i) \cap (\mathfrak{n}_n \mathcal{H}_q^{\operatorname{aff}}(n))$. Then, we have an induced surjective map $\operatorname{im} \gamma_i(S) \to B_{i,n}$. By Step 4 (that was done under the assumption that (a) holds) this must be an isomorphism and $\gamma_i(S)$ must be surjective.

Step 6. (d) holds whenever (a) holds. In Step 4 we also get that the multiplicity of S' as a composition factor of $E^{(i)}(S)$ is $\binom{n}{i}$. If L is a composition factor of $E^{(i)}S$ with $E^{(n-i)}L \neq 0$, then $L \cong S'$. And since the multiplicity of head $(E^{(i)}S)$ in $E^{(i)}S$ is also $\binom{n}{i}$ and head $(E^{(i)}S)$ is not killed by $E^{(n-i)}$, head $(E^{(i)}S) \cong S' \cong \text{soc}(E^{(i)}S)$. Now we also finish the proof of (b) and we are done.

Take i = 1 in the proposition above, we get a map

(1)
$$\tilde{e} : \operatorname{Irr} \mathcal{C} \to \operatorname{Irr} \mathcal{C} \sqcup \{0\}, \ S \mapsto \operatorname{soc}(ES) = \operatorname{head}(ES),$$

and similarly

(2)
$$\tilde{f} : \operatorname{Irr} \mathcal{C} \to \operatorname{Irr} \mathcal{C} \sqcup \{0\}, S \mapsto \operatorname{soc}(FS) = \operatorname{head}(FS).$$

Note that if ES = 0 then $\tilde{e}(S) = \operatorname{soc}(ES) = 0$; If $\tilde{e}(S) \neq 0$, we have $\tilde{f}\tilde{e}S = S$.

2. Berenstein-Kazhdan perfect bases

In this section we introduce the Berenstein-Kazhdan perfect bases. In a \mathfrak{g} -module, a basis is *perfect* in the sense that it behaves nicely under the action of Chevalley generators. It equips the \mathfrak{g} -module with a crystal structure, which was first defined by Kashiwara using quantum groups. The main reference of this section is [BK, Section 5].

Let I be a finite set of indices. Let Λ be a lattice and $\Lambda^{\vee} = \Lambda^*$ be its dual lattice, and let $\{\alpha_i : i \in I\}$ be a subset of Λ and $\{\alpha_j^{\vee} : j \in I\}$ be a subset of Λ^{\vee} . Denote by \mathfrak{g} the Kac-Moody algebra associated to the Cartan matrix $A = (a_{ij})_{i,j\in I}$ with $a_{ij} = \langle \alpha_i, \alpha_j^{\vee} \rangle$, where $\langle \cdot, \cdot \rangle$ is the evaluation pairing. Also denote by $e_i, f_i \ i \in I$ the Chevalley generators of \mathfrak{g} . We say a \mathfrak{g} -module V is an integrable highest weight module if:

- V admits a weight decomposition $V = \bigoplus V_{\lambda}$ and the weights are bounded above.
- e_i and f_i act locally nilpotently for $i \in I$, i.e., for any $v \in V$ and any $i \in I$, there exists an integer N such that $e_i^N(v) = 0$ and $f_i^N(v) = 0$.

For a non-zero vector $v \in V$ and $i \in I$, denote by $h_{i+}(v)$ the smallest positive integer j such that $e_i^{j+1}(v) = 0$ and we use the convention $h_{i+}(0) = -\infty$ for v = 0. Similarly $h_{i-}(v) = \min\{j \in \mathbb{Z} : f_i^{j+1}(v) = 0\}$. Further, denote $d_i(v) := h_{i+}(v) + h_{i-}(v) + 1$ to be the maximal dimension of the irreducible \mathfrak{sl}_2 -submodule in $U(\mathfrak{g}_i)v$, where \mathfrak{g}_i is the subalgebra of \mathfrak{g} generated by e_i , f_i and $h_i = [e_i, f_i]$.

For each $i \in I$ and $d \ge 0$, define the subspace

$$V_i^{\leq d} := \{ v \in V : d_i(v) < d \}$$

We say that a basis **B** of a integrable highest weight \mathfrak{g} -module V is a *weight basis* if **B** is compatible with the weight decomposition, i.e., $\mathbf{B}_{\lambda} := V_{\lambda} \cap \mathbf{B}$ is a basis of V_{λ} for any λ being a weight of V.

Definition 2.1. We say that a weight basis **B** in an integrable highest weight \mathfrak{g} -module V is perfect if for each $i \in I$ there exist maps $\tilde{e}_i, \tilde{f}_i : \mathbf{B} \to \mathbf{B} \cup \{0\}$ such that $\tilde{e}_i(b) \in \mathbf{B}$ if and only if $e_i(b) \neq 0$, and in the latter case on has

(3)
$$e_i(b) \in \mathbb{C}^{\times} \cdot \tilde{e}_i(b) + V_i^{\leq d_i(b)};$$

and $\tilde{f}_i(b) \in \mathbf{B}$ if and only if $f_i(b) \neq 0$, and in the latter case on has

(4)
$$f_i(b) \in \mathbb{C}^{\times} \cdot \tilde{f}_i(b) + V_i^{\leq d_i(b)}.$$

We refer to a pair (V, \mathbf{B}) , where V is an integrable highest weight \mathfrak{g} -module and \mathbf{B} is a perfect basis of V, as a based \mathfrak{g} -module.

Denote by V^+ the space of the highest weight vectors of V:

$$V^{+} = \{ v \in V : e_{i}(v) = 0, \forall i \in I \}.$$

Denote $\mathbf{B}^+ := \mathbf{B} \cap V^+$. Then we have the following result.

Proposition 2.2. For any perfect basis **B** for V, the subset \mathbf{B}^+ is a basis for V^+ .

Proof. For $v \in V^+$, $e_i(v) = 0$, $\forall i \in I$. **B** is a basis of V, so $v = \sum_{b \in \mathbf{B}} \alpha_b b$ with $\alpha_b \in \mathbb{C}$. Therefore

$$e_i(v) = \sum_{b \in \mathbf{B}} \alpha_b e_i(b) = \sum_{b \in \mathbf{B}, e_i(b) \neq 0} \alpha_b e_i(b) = 0.$$

B is perfect so by equation (3), if $e_i(b) \neq 0$ then for some $x_b \in V_i^{\langle d_i(b)}$ and $\beta_b \in \mathbb{C}^{\times}$,

 $b \in$

$$e_i(b) = \beta_b \tilde{e}_i(b) + x_b$$

Hence

$$\sum_{\mathbf{B}, e_i(b) \neq 0} (\alpha_b \beta_b \tilde{e}_i(b) + \alpha_b x_b) = 0.$$

Take $n = \max\{h_{i+}(\tilde{e}_i(b)) : b \in \mathbf{B}, e_i(b) \neq 0\}$ and $\mathbf{B}_n := \{b \in \mathbf{B} : \alpha_b \neq 0, h_{i+}(\tilde{e}_i(b)) = n\}$. Then

$$e_i^n(e_i(v)) = 0 = \sum_{b \in \mathbf{B}_n} \alpha_b \beta_b e_i^n(\tilde{e}_i(b)).$$

Note that for any $b \in \mathbf{B}_n$, $\beta_b \neq 0$ and $e_i^n(\tilde{e}_i(b)) \neq 0$. So $\alpha_b = 0$ and \mathbf{B}_n is empty. So for any $b \in \mathbf{B}$ such that $\alpha_b \neq 0$, $h_{i+}(\tilde{e}_i(b)) = 0$. So $h_{i+}(b) = 0$ and $b \in \mathbf{B}^+$.

HUIJUN ZHAO

3. Perfect basis in $[\mathcal{C}]$

Recall from [Si, Section 2.5], if given $q \neq 1$ being a primitive *l*th-root of unity in \mathbb{F} and $\mathbf{q} = (q_0, \dots, q_{l-1}) \in \mathbb{F}^l$ with $q_i = q^{k_i}$ for $k_i \in \mathbb{Z}/l\mathbb{Z}$, we can construct an $\widehat{\mathfrak{sl}}_l$ -categorification on $\mathcal{C} = \bigoplus_{n\geq 0} H_n$ – mod, where $H_n = H_{\mathbb{F},q,\mathbf{q}}(n)$ denotes the cyclotomic Hecke algebra, which is the quotient of the affine Hecke algebra $\mathcal{H}_q^{\operatorname{aff}}(n)$ by the extra relation $(X_1 - q_0) \cdots (X_1 - q_{l-1}) = 0$ (which is also called a cyclotomic polynomial). The categorification data is given as follows:

- The biadjoint endofunctors $E = \bigoplus \operatorname{Res}_n^{n+1}$ and $F = \bigoplus \operatorname{Ind}_n^{n+1}$, with the decompositions $E = \bigoplus_{i=0}^{l-1} E_i$ and $F = \bigoplus F_i$, where E_i is the *i*-Restriction and F_i is the *i*-Induction, defined in [Si, Section 2.4].
- $L = \bigoplus L_n \in \text{End}(E)$ with L_n denoting the *n*-th Jucys-Murphy element in H_n .
- $T = \bigoplus T_{n-1} \in \text{End}(E^2)$ with $T_{n-1} \in H_n$ being a particular generator of the cyclotomic Hecke algebra.

For $i = 0, \dots, l-1$, $[E_i]$ and $[F_i]$ define a \mathfrak{sl}_2 -action on $[\mathcal{C}] = K_0(\mathcal{C}) \otimes \mathbb{C}$. It is mentioned in [Si, Proposition 3.4] that we have the weight decomposition $\mathcal{C} = \bigoplus_{\lambda} \mathcal{C}_{\lambda}$, where \mathcal{C}_{λ} is the full subcategory of \mathcal{C} consisting of objects whose class is in the weight space $[\mathcal{C}]_{\lambda}$.

The reason why we are interested in crystals is that the categorical $\widehat{\mathfrak{sl}}_l$ action on \mathcal{C} gives rise to a canonical crystal structure on the set Irr \mathcal{C} of simple objects in \mathcal{C} . In this section, we are going to construct a perfect basis for the $\widehat{\mathfrak{sl}}_l$ -module $[\mathcal{C}]$ using results in Proposition 1.1, and deduce that $[\mathcal{C}]$ is an irreducible $\widehat{\mathfrak{sl}}_l$ -module.

Denote $V = [\mathcal{C}]$. According to the weight decomposition, V is an integrable highest weight \mathfrak{g} -module. Take the basis \mathbf{B} of $V = [\mathcal{C}]$ consisting of classes of all simple objects. Similarly to Equation (1) and (2), we can define maps $\tilde{e}_i, \tilde{f}_i : \operatorname{Irr} \mathcal{C} \to \operatorname{Irr} \mathcal{C} \sqcup \{0\}$ for $i \in I$. Note that for a simple object S in $\mathcal{C}, \tilde{e}_i(S) = 0$ if and only if soc $E_i(S) = 0$, iff and only if $E_i S = 0$, i.e., $e_i[S] = 0$. Together with Proposition 1.1, we see that \tilde{e}_i, \tilde{f}_i are maps satisfying conditions (3) and (4), so $\mathbf{B} = \operatorname{Irr} \mathcal{C}$ is a perfect basis of V and (V, \mathbf{B}) is a based \mathfrak{g} -module.

Now consider the basis \mathbf{B}^+ of the space of highest weight vectors. $[S] \in \mathbf{B}^+$ means that S is simple and $\tilde{e}_i([S]) = 0$ for all $i \in I$. Then $e_i[S] = 0$, which means exactly $E_i S = 0$ for all $i \in I$. So $ES = \bigoplus E_i S = 0$, i.e., $\bigoplus \operatorname{Res}_{n-1}^n S = 0$ for all $n \geq 0$. The only simple S in C is a simple H_0 -module. Since $H_0 = \mathbb{F}$, so $S \simeq \mathbb{F}$ is unique up to isomorphism. [S] is the unique (up to scalar) highest weight vector in V. Therefore V is irreducible.

References

- [BK] A. Berenstein, D. Kazhdan, Geometric and unipotent crystals II: from unipotent bicrystals to crystal bases. http://arxiv.org/abs/ math/0601391
- [CR] J. Chuang, R. Rouquier, Derived equivalences for symmetric groups and sl₂-categorification. Ann. Math. 167 (2008) 245-298. http: //www.math.ucla.edu/~rouquier/papers/dersn.pdf
- [Si] J. Simental, Introduction to type A categorical Kac-Moody actions. Notes for this seminar.
- [Ven] S. Venkatesh, Ariki-Koike algebras, affine Hecke algebras. Notes for this seminar.