CRYSTALS

HUIJUN ZHAO

In these notes we introduce the crystal structures of modules over Kac-Moody algebras obtained from BerensteinKazhdan perfect bases, especially on the complexified Grothendieck groups of type A Kac-Moody categorifications.

In Section 1 we describe the structure of simple objects in an $\mathfrak{s l}_{2}$-categorification. In Section 2, we introduce the Berenstein-Kazhdan perfect bases of integrable highest weight representations of a Kac-Moody algebra. Finally in Section 3, we apply what we have in the first two sections to the example of categorical $\widehat{\mathfrak{s l l}_{l}}$-action on modules over cyclotomic Hecke algebras, and conclude that this is a categorification of an irreducible $\widehat{\mathfrak{s l l}}_{l}$-module.

1. Simple objects in an $\mathfrak{s l}_{2}$-CATEGORIFication

1.1. Reminder and notation. Let \mathcal{C} be a general artinian and noetherian \mathbb{F}-linear abelian category equipped with a categorical $\mathfrak{s l}_{2}$-action given by the endofunctors E and F, the parameter $q \in \mathbb{F}^{\times}$and $a \in \mathbb{F}$, where $a \neq 0$ if $q \neq 1$, and $L \in \operatorname{End}(E), T \in \operatorname{End}\left(E^{2}\right)$. We adopt some notation from [Si] and CR:

- Let $[\mathcal{C}]=K_{0}(\mathcal{C}) \otimes \mathbb{C}$ denote the complexified Grothendieck group of \mathcal{C} and $\mathcal{H}_{q}^{\text {aff }}(n)$ denote the affine Hecke algebra generated by $X_{1}, \cdots, X_{n}, T_{1}, \cdots, T_{n-1}$ subject to the Hecke relations.
- For some $U \in \mathcal{C}$, denote $h_{+}(U):=\max \left\{j: E^{j} U \neq 0\right\}, h_{-}(U):=\max \left\{j: F^{j} U \neq 0\right\}$, and $d(U):=h_{+}(U)+$ $h_{-}(U)+1$. Also, denote the socle of U by $\operatorname{soc}(U)$, which is the maximal semisimple subobject of U in \mathcal{C}, and the head by head (U), which is the maximal semisimple quotient.
- $E^{(i)}, F^{(i)}$ denote the categorified divided powers.
- Let $\mathfrak{m}_{n} \subseteq P_{n}:=\mathbb{F}\left[X_{1}^{ \pm}, \ldots, X_{n}^{ \pm}\right]$be the ideal generated by $\left(X_{i}-a\right), i=1, \ldots, n$. Let $\mathfrak{n}_{n}:=\mathfrak{m}_{n}^{\mathfrak{S}_{n}} \subseteq \mathcal{H}_{q}^{\text {aff }}(n)$. Let \mathcal{N}_{n} be the category of $\mathcal{H}_{q}^{\text {aff }}(n)$-modules with locally nilpotent \mathfrak{n}_{n}-action. Since \mathfrak{n}_{n} is contained in the center of $\mathcal{H}_{q}^{\text {aff }}(n)$, the quotient $\overline{\mathcal{H}(n)}=\mathcal{H}_{q}^{\text {aff }}(n) / \mathfrak{n}_{n} \mathcal{H}_{q}^{\text {aff }}(n)$ is an algebra. For $0 \leq i \leq n$, denote by $B_{i, n}$ the image of the subalgebra $\mathcal{H}_{q}^{\text {aff }}(i)$ inside $\overline{\mathcal{H}(n)}$. Define the Kato modules $K_{n}:=\mathcal{H}_{q}^{\text {aff }}(n) \otimes_{P_{n}} P_{n} / \mathfrak{m}_{n} \cong\left(\mathcal{H}_{q}^{\text {aff }}(n) / \mathfrak{n}_{n}\right) c_{n}^{\tau}$ to be the unique simple module in \mathcal{N}_{n}, where $c_{n}^{\tau}=\sum_{w \in \mathfrak{S}_{n}} q^{-\ell(w)} \tau\left(T_{w}\right) T_{w}$ for $\tau \in\{$ triv, sign $\}$.
- As in [Si, Proposition 3.3], for any $U \in \mathcal{C}$ and $n>0, E^{n}(U)$ has a natural left $\mathcal{H}_{q}^{\text {aff }}(n)$-module structure. It induces a morphism $\gamma_{n}: \mathcal{H}_{q}^{\text {aff }}(n) \rightarrow \operatorname{End}\left(E^{n}\right)$ defined by $T_{i} \mapsto \mathbf{1}_{E^{n-i-1}} T \mathbf{1}_{E^{i-1}}$ and $X_{j} \mapsto \mathbf{1}_{E^{n-i}} L \mathbf{1}_{E^{i-1}}$.
- Given $d \geq 0$, let $\mathcal{C} \leq d$ be the full Serre subcategory of \mathcal{C} consisting of all simple objects S such that $d(S) \leq d$. Let $[\mathcal{C}]^{\leq d}$ be the maximal submodule of $[\mathcal{C}]$ containing all modules of dimension $\leq d$. Clearly $[\mathcal{C} \leq d] \subset[\mathcal{C}] \leq d$. In fact this is an equality.
1.2. Simples in \mathcal{C}. In this subsection, we focus on the categorical action of E and F on a simple object S in \mathcal{C}. In general, $E S$ and $F S$ (or more generally, $E^{(i)} S$ and $F^{(i)} S$) are not necessarily simple, but their socles and heads are. Also we prove some results describing $\operatorname{End}\left(E^{(i)} S\right)$.

The following result is due to Chuang-Rouquier [CR, Prposition 5.20].
Proposition 1.1. Let S be a simple object of \mathcal{C}, and let $n=h_{+}(S)$. Then, for every $i \leq n$:
(a) The object $E^{(n)} S$ is simple.
(b) The socle and the head of $E^{(i)} S$ are isomorphic to a simple object S^{\prime} of \mathcal{C}. We have $\mathcal{H}_{q}^{\text {aff }}(i)$-equivariant \mathcal{C}-isomorphisms: $\operatorname{soc}\left(E^{i} S\right) \cong h e a d\left(E^{i} S\right) \cong S^{\prime} \otimes K_{i}$.
(c) The canonical homomorphism $\gamma_{i}(S): \mathcal{H}_{q}^{\text {aff }}(i) \rightarrow \operatorname{End}_{\mathcal{C}}\left(E^{i} S\right)$ factors through $B_{i, n}$. Moreover, it induces an isomorphism $B_{i, n} \stackrel{\cong}{\cong} \operatorname{End}_{\mathcal{C}}\left(E^{i} S\right)$.

(d) We have $\left[E^{(i)}(S)\right]-\binom{n}{i}\left[S^{\prime}\right] \in[\mathcal{C}] \leq d\left(S^{\prime}\right)-1$.

The corresponding statements with E replaced by F and $h_{+}(S)$ by $h_{-}(S)$ hold as well.
To prove the proposition, we need the following two lemmas.

Lemma 1.2. Let M be an object of \mathcal{C}. If $d(S) \geq r$ for any simple subobject (resp. quotient) S of M, then $d\left(S^{\prime}\right) \geq r$ for any simple subobject (resp. quotient) of EM or FM.

Proof. By the weight decomposition of \mathcal{C} ($(\mathbf{S i}$, Proposition 3.5]), it is enough to consider the case where M lies in a single weight space. Let T be a simple submodule of $E M$, by adjunction, $\operatorname{Hom}(F T, M) \cong \operatorname{Hom}(T, E M) \neq 0$. So there exists S being a simple subobject of M that is a composition factor of $F T$. Hence, $d(T) \geq d(F T) \geq d(S) \geq r$. The proofs for $F M$ and simple quotients are similar.

For $1 \leq i \leq j \leq n$, denote by $\mathfrak{S}_{[i, j]}$ the symmetric group on $[i, j]=\{i, i+1, \cdots, j\}$. We define similarly $\mathcal{H}_{q}^{\text {aff }}([i, j])$ and $\overline{\mathcal{H}([i, j])}$ and we put $c_{[i, j]}^{\tau}=\sum_{w \in \mathfrak{S}_{[i, j]}} q^{-\ell(w)} \tau\left(T_{w}\right) T_{w}$.
Lemma 1.3. The $\mathcal{H}_{q}^{\text {aff }}(i)$-module $c_{[i+1, n]}^{\tau} K_{n}$ has a simple socle and head.
Proof. See CR, Lemma 3.6], or Ven, Theorem 5.10].
Proof of Proposition 1.1. The proof is in several steps.
Step 1. (a) holds when $F S=0$. Since $[E],[F]$ define an $\mathfrak{s l}_{2}$-action on $[\mathcal{C}],\left[F^{(n)} E^{(n)} S\right]=r[S]$ for some $r \in \mathbb{Z}_{>0}$. By adjointness, $\operatorname{Hom}\left(F^{(n)} E^{(n)} S, S\right)=\operatorname{Hom}\left(E^{(n)} S, E^{(n)} S\right) \neq 0$. So there exists a nonzero homomorphism $F^{(n)} E^{(n)} S \rightarrow S$, hence an isomorphism. Then $F^{(n)} E^{(n)} S \cong S$. If $E^{(n)} S$ has at least two composition factors, then by weight consideration, $F^{(n)} E^{(n)} S$ also has at least two composition factors, and thus cannot be simple. So $E^{(n)} S=S^{\prime}$ must be simple.

Step 2. (a) holds in general. Let L be a simple quotient of $F^{(r)} S$, where $r=h_{-}(S)$. Note that, by our choice of $r, F L=0$ so, by Step $1, E^{(n+r)} L=T$ is simple and $E^{(n)} E^{(r)} L=\left({ }_{r}^{n+r}\right) T$. By adjunction, we have that $\operatorname{Hom}\left(S, E^{(r)} L\right) \cong \operatorname{Hom}\left(F^{(r)} S, L\right) \neq 0$, so S must be a subobject of $E^{(r)} L$. It follows that $E^{(n)} S$ must be a subobject of $\binom{n+r}{r} T$. So $E^{(n)} S=m T$ for some $m>0$. Clearly, $m=\operatorname{dim} \operatorname{Hom}\left(E^{(n)} S, T\right)=\operatorname{dim} \operatorname{Hom}\left(S, F^{(n)} T\right)$. But $E T=0$, so by Step 1 (with E and F swapped) $\operatorname{soc}\left(F^{(n)} T\right)$ is simple. Thus, $m=1$.

Step 3. (b) holds whenever (a) does. Clearly, (b) holds when $i=n$. But let us observe a bit more. We have $E^{n} S=n!S^{\prime}$ for some simple module S^{\prime}. Thus, $E^{n} S=S^{\prime} \otimes R$ for some left $\mathcal{H}_{q}^{\text {aff }}(n)$-module R in \mathcal{N}_{n}. Since $\operatorname{dim} R=n!=\operatorname{dim} K_{n}$, we must have $R=K_{n}$.

For $i<n$ we have, using exactness of E and the above paragraph, that $E^{n-i} \operatorname{soc}\left(E^{(i)} S\right) \subseteq E^{n-i} E^{(i)} S \cong S^{\prime \prime} \otimes K_{n} c_{i}^{1}$. The $\mathcal{H}_{q}^{\text {aff }}(n-i)$-module $K_{n} c_{i}^{1}$ has a simple head and socle, (Lemma 1.3), so the same is true for $S^{\prime \prime} \otimes K_{n} c_{i}^{\tau}$ (as a $\mathcal{H}_{q}^{\text {aff }}(n-i)$-module in $\left.\mathcal{C}\right)$. It follows that $E^{n-i} \operatorname{soc}\left(E^{(i)} S\right)$ is indecomposable as a $\mathcal{H}_{q}^{\text {aff }}(n-i)$-module in \mathcal{C}. Now, if S^{\prime} is a nonzero summand of $\operatorname{soc}\left(E^{(i)} S\right)$, then $E^{n-i} S^{\prime} \neq 0$ (Lemma 1.2p. So $\operatorname{soc}\left(E^{(i)} S\right)$ has no more than one summand and hence must be simple. We have $\operatorname{soc}\left(E^{i} S\right) \cong S^{\prime} \otimes R$ for some $\mathcal{H}_{q}^{\text {aff }}(i)$-module R in \mathcal{N}_{i}. Since $\operatorname{dim} R=i$!, it follows that $R \cong K_{i}$. soc $\left(E^{(i)} S\right)=S^{\prime}$. The proof for the head being simple is similar. It remains to show that the head and the socle are isomorphic.

Step 4. Estimating the dimension of $\operatorname{End}\left(E^{i} S\right)$. Since $S^{\prime}=\operatorname{soc}\left(E^{(i)} S\right)$ is simple, the dimension of $\operatorname{Hom}\left(M, E^{(i)} S\right)$ is at most the multiplicity of S^{\prime} in M. Taking $M=E^{(i)} S$, we get that the dimension of $\operatorname{End}\left(E^{(i)} S\right)$ is at most the multiplicity of S^{\prime} in $E^{(i)} S$. Since $E^{(n-i)} S^{\prime} \neq 0$, we have that the dimension of $\operatorname{End}\left(E^{(i)} S\right)$ is at most the number of composition factors of $E^{(n-i)} E^{(i)} S$. But $E^{(n-i)} E^{(i)} S=\binom{n}{i} S^{\prime \prime}$. Thus, $\operatorname{dim}\left(\operatorname{End}\left(E^{(i)} S\right)\right) \leq\binom{ n}{i}$. Since $E^{i} S=i!E^{(i)} S$, it follows that $\operatorname{dim} \operatorname{End}\left(E^{i} S\right) \leq(i!)^{2}\binom{n}{i}=\operatorname{dim} B_{i, n}$.

Step 5. (c) holds whenever (a) holds. $\operatorname{ker} \gamma_{n}(S) \subseteq \mathfrak{n}_{n} \mathcal{H}_{q}^{\text {aff }}(n)$ since the former is a proper ideal and the latter is a maximal ideal of $\mathcal{H}_{q}^{\text {aff }}(n)$. For $i<n$, we have that $\operatorname{ker} \gamma_{i}(S) \subseteq \mathcal{H}_{q}^{\text {aff }}(i) \cap \operatorname{ker} \gamma_{n}(S) \subseteq \mathcal{H}_{q}^{\text {aff }}(i) \cap\left(\mathfrak{n}_{n} \mathcal{H}_{q}^{\text {aff }}(n)\right)$. Then, we have an induced surjective map $\operatorname{im} \gamma_{i}(S) \rightarrow B_{i, n}$. By Step 4 (that was done under the assumption that (a) holds) this must be an isomorphism and $\gamma_{i}(S)$ must be surjective.

Step 6. (d) holds whenever (a) holds. In Step 4 we also get that the multiplicity of S^{\prime} as a composition factor of $E^{(i)}(S)$ is $\binom{n}{i}$. If L is a composition factor of $E^{(i)} S$ with $E^{(n-i)} L \neq 0$, then $L \cong S^{\prime}$. And since the multiplicity of $\operatorname{head}\left(E^{(i)} S\right)$ in $E^{(i)} S$ is also $\binom{n}{i}$ and head $\left(E^{(i)} S\right)$ is not killed by $E^{(n-i)}, \operatorname{head}\left(E^{(i)} S\right) \cong S^{\prime} \cong \operatorname{soc}\left(E^{(i)} S\right)$. Now we also finish the proof of (b) and we are done.

Take $i=1$ in the proposition above, we get a map

$$
\begin{equation*}
\tilde{e}: \operatorname{IrrC} \rightarrow \operatorname{IrrC} \sqcup\{0\}, S \mapsto \operatorname{soc}(E S)=\operatorname{head}(E S) \tag{1}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\tilde{f}: \operatorname{IrrC} \rightarrow \operatorname{IrrC} \sqcup\{0\}, S \mapsto \operatorname{soc}(F S)=\operatorname{head}(F S) \tag{2}
\end{equation*}
$$

Note that if $E S=0$ then $\tilde{e}(S)=\operatorname{soc}(E S)=0$; If $\tilde{e}(S) \neq 0$, we have $\tilde{f} \tilde{e} S=S$.

2. Berenstein-Kazhdan perfect bases

In this section we introduce the Berenstein-Kazhdan perfect bases. In a \mathfrak{g}-module, a basis is perfect in the sense that it behaves nicely under the action of Chevalley generators. It equips the \mathfrak{g}-module with a crystal structure, which was first defined by Kashiwara using quantum groups. The main reference of this section is [BK, Section 5].

Let I be a finite set of indices. Let Λ be a lattice and $\Lambda^{\vee}=\Lambda^{*}$ be its dual lattice, and let $\left\{\alpha_{i}: i \in I\right\}$ be a subset of Λ and $\left\{\alpha_{j}^{\vee}: j \in I\right\}$ be a subset of Λ^{\vee}. Denote by \mathfrak{g} the Kac-Moody algebra associated to the Cartan matrix $A=\left(a_{i j}\right)_{i, j \in I}$ with $a_{i j}=\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle$, where $\langle\cdot, \cdot\rangle$ is the evaluation pairing. Also denote by $e_{i}, f_{i} i \in I$ the Chevalley generators of \mathfrak{g}. We say a \mathfrak{g}-module V is an integrable highest weight module if:

- V admits a weight decomposition $V=\bigoplus V_{\lambda}$ and the weights are bounded above.
- e_{i} and f_{i} act locally nilpotently for $i \in I$, i.e., for any $v \in V$ and any $i \in I$, there exists an integer N such that $e_{i}^{N}(v)=0$ and $f_{i}^{N}(v)=0$.
For a non-zero vector $v \in V$ and $i \in I$, denote by $h_{i+}(v)$ the smallest positive integer j such that $e_{i}^{j+1}(v)=0$ and we use the convention $h_{i+}(0)=-\infty$ for $v=0$. Similarly $h_{i-}(v)=\min \left\{j \in \mathbb{Z}: f_{i}^{j+1}(v)=0\right\}$. Further, denote $d_{i}(v):=h_{i+}(v)+h_{i-}(v)+1$ to be the maximal dimension of the irreducible $\mathfrak{s l}_{2}$-submodule in $U\left(\mathfrak{g}_{i}\right) v$, where \mathfrak{g}_{i} is the subalgebra of \mathfrak{g} generated by e_{i}, f_{i} and $h_{i}=\left[e_{i}, f_{i}\right]$.

For each $i \in I$ and $d \geq 0$, define the subspace

$$
V_{i}^{<d}:=\left\{v \in V: d_{i}(v)<d\right\}
$$

We say that a basis \mathbf{B} of a integrable highest weight \mathfrak{g}-module V is a weight basis if \mathbf{B} is compatible with the weight decomposition, i.e., $\mathbf{B}_{\lambda}:=V_{\lambda} \cap \mathbf{B}$ is a basis of V_{λ} for any λ being a weight of V.
Definition 2.1. We say that a weight basis \mathbf{B} in an integrable highest weight \mathfrak{g}-module V is perfect if for each $i \in I$ there exist maps $\tilde{e}_{i}, \tilde{f}_{i}: \mathbf{B} \rightarrow \mathbf{B} \cup\{0\}$ such that $\tilde{e}_{i}(b) \in \mathbf{B}$ if and only if $e_{i}(b) \neq 0$, and in the latter case on has

$$
\begin{equation*}
e_{i}(b) \in \mathbb{C}^{\times} \cdot \tilde{e}_{i}(b)+V_{i}^{<d_{i}(b)} \tag{3}
\end{equation*}
$$

and $\tilde{f}_{i}(b) \in \mathbf{B}$ if and only if $f_{i}(b) \neq 0$, and in the latter case on has

$$
\begin{equation*}
f_{i}(b) \in \mathbb{C}^{\times} \cdot \tilde{f}_{i}(b)+V_{i}^{<d_{i}(b)} \tag{4}
\end{equation*}
$$

We refer to a pair (V, \mathbf{B}), where V is an integrable highest weight \mathfrak{g}-module and \mathbf{B} is a perfect basis of V, as a based \mathfrak{g}-module.

Denote by V^{+}the space of the highest weight vectors of V :

$$
V^{+}=\left\{v \in V: e_{i}(v)=0, \forall i \in I\right\}
$$

Denote $\mathbf{B}^{+}:=\mathbf{B} \cap V^{+}$. Then we have the following result.
Proposition 2.2. For any perfect basis \mathbf{B} for V, the subset \mathbf{B}^{+}is a basis for V^{+}.
Proof. For $v \in V^{+}, e_{i}(v)=0, \forall i \in I$. B is a basis of V, so $v=\sum_{b \in \mathbf{B}} \alpha_{b} b$ with $\alpha_{b} \in \mathbb{C}$. Therefore

$$
e_{i}(v)=\sum_{b \in \mathbf{B}} \alpha_{b} e_{i}(b)=\sum_{b \in \mathbf{B}, e_{i}(b) \neq 0} \alpha_{b} e_{i}(b)=0
$$

B is perfect so by equation (3), if $e_{i}(b) \neq 0$ then for some $x_{b} \in V_{i}^{<d_{i}(b)}$ and $\beta_{b} \in \mathbb{C}^{\times}$,

$$
e_{i}(b)=\beta_{b} \tilde{e}_{i}(b)+x_{b}
$$

Hence

$$
\sum_{b \in \mathbf{B}, e_{i}(b) \neq 0}\left(\alpha_{b} \beta_{b} \tilde{e}_{i}(b)+\alpha_{b} x_{b}\right)=0
$$

Take $n=\max \left\{h_{i+}\left(\tilde{e}_{i}(b)\right): b \in \mathbf{B}, e_{i}(b) \neq 0\right\}$ and $\mathbf{B}_{n}:=\left\{b \in \mathbf{B}: \alpha_{b} \neq 0, h_{i+}\left(\tilde{e}_{i}(b)\right)=n\right\}$. Then

$$
e_{i}^{n}\left(e_{i}(v)\right)=0=\sum_{b \in \mathbf{B}_{n}} \alpha_{b} \beta_{b} e_{i}^{n}\left(\tilde{e}_{i}(b)\right)
$$

Note that for any $b \in \mathbf{B}_{n}, \beta_{b} \neq 0$ and $e_{i}^{n}\left(\tilde{e}_{i}(b)\right) \neq 0$. So $\alpha_{b}=0$ and \mathbf{B}_{n} is empty. So for any $b \in \mathbf{B}$ such that $\alpha_{b} \neq 0$, $h_{i+}\left(\tilde{e}_{i}(b)\right)=0$. So $h_{i+}(b)=0$ and $b \in \mathbf{B}^{+}$.

3. PERFECT BASIS IN $[\mathcal{C}]$

Recall from [Sil Section 2.5], if given $q \neq 1$ being a primitive l th-root of unity in \mathbb{F} and $\mathbf{q}=\left(q_{0}, \cdots, q_{l-1}\right) \in \mathbb{F}^{l}$ with $q_{i}=q^{k_{i}}$ for $k_{i} \in \mathbb{Z} / l \mathbb{Z}$, we can construct an $\widehat{\mathfrak{s l l}}_{l}$-categorification on $\mathcal{C}=\bigoplus_{n \geq 0} H_{n}-\bmod$, where $H_{n}=H_{\mathbb{F}, q, \mathbf{q}}(n)$ denotes the cyclotomic Hecke algebra, which is the quotient of the affine Hecke algebra $\mathcal{H}_{q}^{\text {aff }}(n)$ by the extra relation $\left(X_{1}-q_{0}\right) \cdots\left(X_{1}-q_{l-1}\right)=0$ (which is also called a cyclotomic polynomial). The categorification data is given as follows:

- The biadjoint endofunctors $E=\bigoplus \operatorname{Res}_{n}^{n+1}$ and $F=\bigoplus \operatorname{Ind}_{n}^{n+1}$, with the decompositions $E=\bigoplus_{i-0}^{l-1} E_{i}$ and $F=\bigoplus F_{i}$, where E_{i} is the i-Restriction and F_{i} is the i-Induction, defined in [Si, Section 2.4].
- $L=\bigoplus L_{n} \in \operatorname{End}(E)$ with L_{n} denoting the n-th Jucys-Murphy element in H_{n}.
- $T=\bigoplus T_{n-1} \in \operatorname{End}\left(E^{2}\right)$ with $T_{n-1} \in H_{n}$ being a particular generator of the cyclotomic Hecke algebra.

For $i=0 . \cdots, l-1,\left[E_{i}\right]$ and $\left[F_{i}\right]$ define a $\mathfrak{s l}_{2}$-action on $[\mathcal{C}]=K_{0}(\mathcal{C}) \otimes \mathbb{C}$. It is mentioned in [Si, Proposition 3.4] that we have the weight decomposition $\mathcal{C}=\bigoplus_{\lambda} \mathcal{C}_{\lambda}$, where \mathcal{C}_{λ} is the full subcategory of \mathcal{C} consisting of objects whose class is in the weight space $[\mathcal{C}]_{\lambda}$.

The reason why we are interested in crystals is that the categorical $\widehat{\mathfrak{s f}}{ }_{l}$ action on \mathcal{C} gives rise to a canonical crystal structure on the set $\operatorname{Irr} \mathcal{C}$ of simple objects in \mathcal{C}. In this section, we are going to construct a perfect basis for the $\widehat{\mathfrak{s l l}}_{l}$-module $[\mathcal{C}]$ using results in Propostion 1.1 , and deduce that $[\mathcal{C}]$ is an irreducible $\widehat{\mathfrak{s l l}}_{l}$-module.

Denote $V=[\mathcal{C}]$. According to the weight decomposition, V is an integrable highest weight \mathfrak{g}-module. Take the basis \mathbf{B} of $V=[\mathcal{C}]$ consisting of classes of all simple objects. Similarly to Equation (1) and (2), we can define maps $\tilde{e}_{i}, \tilde{f}_{i}: \operatorname{Irr} \mathcal{C} \rightarrow \operatorname{Irr\mathcal {C}} \sqcup\{0\}$ for $i \in I$. Note that for a simple object S in $\mathcal{C}, \tilde{e}_{i}(S)_{\tilde{\sim}}=0$ if and only if $\operatorname{soc} E_{i}(S)=0$, iff and only if $E_{i} S=0$, i.e., $e_{i}[S]=0$. Together with Proposition 1.1. we see that $\tilde{e}_{i}, \tilde{f}_{i}$ are maps satisfying conditions (3) and (4), so $\mathbf{B}=\operatorname{Irr} \mathcal{C}$ is a perfect basis of V and (V, \mathbf{B}) is a based \mathfrak{g}-module.

Now consider the basis \mathbf{B}^{+}of the space of highest weight vectors. $[S] \in \mathbf{B}^{+}$means that S is simple and $\tilde{e}_{i}([S])=0$ for all $i \in I$. Then $e_{i}[S]=0$, which means exactly $E_{i} S=0$ for all $i \in I$. So $E S=\bigoplus E_{i} S=0$, i.e., $\bigoplus \operatorname{Res}_{n-1}^{n} S=0$ for all $n \geq 0$. The only simple S in \mathcal{C} is a simple H_{0}-module. Since $H_{0}=\mathbb{F}$, so $S \simeq \mathbb{F}$ is unique up to isomorphism. $[S]$ is the unique (up to scalar) highest weight vector in V. Therefore V is irreducible.

References

[BK] A. Berenstein, D. Kazhdan, Geometric and unipotent crystals II: from unipotent bicrystals to crystal bases. http://arxiv.org/abs/ math/0601391
[CR] J. Chuang, R. Rouquier, Derived equivalences for symmetric groups and $\mathfrak{s l}_{2}$-categorification. Ann. Math. 167 (2008) 245-298. http: //www.math.ucla.edu/~rouquier/papers/dersn.pdf
[Si] J. Simental, Introduction to type A categorical Kac-Moody actions. Notes for this seminar.
[Ven] S. Venkatesh, Ariki-Koike algebras, affine Hecke algebras. Notes for this seminar.

