
ROUQUIER COMPLEXES

DONGKWAN KIM

1. Rouquier complexes

1.1. Setup. In this talk k is a field of characteristic 0. Let (W,S) be a Coxeter group with
|S| = n < ∞. Also we let V =

∑
s∈S kes be the reflection representation of W , and R = k[V ]. R

is a graded algebra with V ∗ in degree 2. We abbreviate M ⊗R N = MN for a right R-module M
and a left R-module N . We let {αs}s∈S be the dual basis of {es}s∈S , which can be considered as
elements in V ∗ ⊂ R. Thus R ' k[α1, · · · , αn] is a polynomial algebra of n variables.

The natural action of W on V induces that on R, i.e. (w · f)(v) := f(w−1(v)), and thus on
R−modgr (the category of graded R-module) and Db(R−modgr) (its bounded derived category)
in a way that for f ∈ R and m ∈ wM we have f ·m = (w−1 · f)(m). Note that for M ∈ R−modgr,
wM ' RwM , where Rw is a R-bimodule such that Rw ' R as a left R-module and

m · a = mw(a) for m ∈ Rw, a ∈ R,
i.e. the right action is twisted by w. In other words,

W → End(Db(R−modgr)) : w 7→ Rw ⊗R −

is a well-defined action of W on Db(R − modgr). Also note that for any w,w′ ∈ W , we have a
canonical isomorphism RwRw′ ' Rww′ : 1⊗ 1 7→ 1 of R-bimodules.

Let Kb(R −modgr) be the bounded homotopy category of R −modgr. This is the category of
bounded chain complexes in R−modgr modulo homotopy equivalence: for f, g : A• → B•, we say
that f is homotopic to g, denoted f ∼ g, if there exists h : A• → B•−1 such that f − g = dh+ hd.
In Kb(R −modgr), A

• ' B• if there exist f : A• → B• and g : B• → A• such that gf ∼ idA and
fg ∼ idB . Note that this category is well-defined if one replaces R−modgr by any additive category,
not necessarily abelian. In particular, if we let SBimgr be the category of graded Soergel bimodules
and R − bimgr be the category of graded R-bimodules, then Kb(SBimgr) and Kb(R − bimgr) are
well-defined and we haveKb(SBimgr) ⊂ Kb(R− bimgr).

1.2. Definition of Rouquier complexes. Our goal is to lift the action of W on Db(R−modgr)
mentioned above to Kb(R −modgr), using Soergel bimodules. How can we lift Rw ⊗ −? We may
consider:

W → End(Kb(R−modgr)) : w 7→ Rw ⊗R −
which gives a trivial lift, but this is not interesting... Here we introduce another ‘interesting’ lifting
introduced by Rouquier. However, instead we should work with the braid group BW of (W,S)
instead of W itself.
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Any object M ∈ Kb(R − bimgr) defines an endofunctor Kb(R − modgr) → Kb(R − modgr) :
N 7→ M ⊗R N =: MN . For a word w with alphabet S ∪ S−1, we will define an invertible object
Fw ∈ Kb(SBimgr) ⊂ Kb(R − bimgr) which descends to Rw ∈ Db(R − bimgr) (up to a shift). Here,
w ∈W is w considered as a product of simple reflections in W .

First we recall some morphisms defined in Boris’ talk:

ms : Bs → R(1) : f ⊗ g 7→ fg, ma
s : R(−1)→ Bs : f 7→ fαs ⊗ 1 + f ⊗ αs

js : BsBs(1)→ Bs : f ⊗ g ⊗ h 7→ ∂s(g)f ⊗ h jas : Bs(1)→ R : f ⊗ g 7→ f ⊗ 1⊗ g

((i) is the grading shift as a graded R-bimodule.) For s ∈ S, we define

Fs := 0→ Bs
ms−−→ R(1)→ 0 ∈ Kb(SBimgr)

Fs−1 := 0→ R(−1)
ma

s−−→ Bs → 0 ∈ Kb(SBimgr)

The box indicates cohomology degree 0. From the following exact sequences of gradedR-bimodules

0→ Rs(−1)
f 7→f⊗αs−fαs⊗1−−−−−−−−−−−→ Bs

ms−−→ R(1)→ 0

0→ R(−1)
ma

s−−→ Bs
f⊗g 7→fs(g)−−−−−−−→ Rs(1)→ 0

it easily follows that

Rs ' Fs(1) ' Fs−1(−1) in Db(R− bimgr).

However, they are not equal in Kb(R− bimgr).

Exercise 1.1. Prove that Rs 6' Fs(1) and Rs 6' Fs−1(−1).

In general, for a word w = abcd · · · with alphabet S ∪ S−1, we define

Fw := FaFbFcFd · · · ∈ Kb(SBimgr),

called the Rouquier complex corresponding to w. In particular, we have F∅ = R, Fs = Fs, and
Fs−1 = Fs−1 .

Remark. Indeed, the split Grothendieck group of SBimgr is isomorphic to the Hecke algebra of
W . Under this correspondence, the image of the class of Fs is the standard basis Ts.

1.3. Some properties of Rouquier complexes. We claim that indeed this correspondence w 7→
Fw defines a weak action of BW on Kb(R − modgr). For that, we need to check that Fw1 ' Fw2

if w1 and w2 represent the same element in BW . (Note that this does not hold if we only assume
that w1 and w2 represent the same element in W , e.g. Fs 6' Fs−1 .) To that end, it suffices to show
the following.

(1) FsFs−1 ' Fs−1Fs ' R for s ∈ S.

(2) FsFtFs · · · ' FtFsFt · · · where each side is the product of m terms, for s, t ∈ S and m ∈ N
such that (st)m = 1 ∈W .
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First we show that FsFs−1 ' R in Kb(R − bimgr). The tensor product of Fs and Fs−1 is
described as follows. (Here, we understand this diagram as a single chain complex, each of whose
terms is the direct sum of objects on each column.)

BsBs

FsFs−1 = Bs(−1) Bs(1)

R

ms⊗1

m

1⊗ma

−ma

We claim that it is homotopy equivalent to R. Indeed, if we define (we omit the subscript s)

(1) ι1 = (1⊗ma,m) : Bs(−1)→ BsBs ⊗R

(2) ι2 = (ja, 0) : Bs(1)→ BsBs ⊗R

(3) ι3 = (jama, Id) : R→ BsBs ⊗R

(4) ρ1 = j ⊕ 0 : BsBs ⊗R→ Bs(−1)

(5) ρ2 = (m⊗ 1)⊕ (−ma) : BsBs ⊗R→ Bs(1)

(6) ρ3 = −mj ⊕ Id : BsBs ⊗R→ R

then they give a decomposition of BsBs ⊕ R into Bs(−1)⊕ Bs(1)⊕ R, i.e. ρiιi = Id and ρjιi = 0
if i 6= j.

Bs(−1) BsBs ⊕R Bs(1)

R

(1⊗ma,m)

j⊕0

(m⊗1)⊕(−ma)

−mj⊕id

(ja,0)

(jama,id)

In other words, the following diagram describes that FsFs−1 ' R in Kb(R−bimgr). (One can easily
show that the vertical maps are mutual inverses using ιi and ρi for 1 ≤ i ≤ 3.)

Bs(−1) BsBs ⊕R Bs(1)

0 R 0

Bs(−1) BsBs ⊕R Bs(1)

(1⊗ma,m)

−mj⊕id

(m⊗1)⊕(−ma)

(jama,id)

(1⊗ma,m) (m⊗1)⊕(−ma)

Fs−1Fs ' R can be proved similarly.
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However, FsFs is not homotopy equivalent to R, even up to a shift. Indeed, we have

Bs(1)

FsFs = BsBs R(2)

Bs(1)

m

m⊗1

1⊗m

−m

and it is homotopy equivalent to the following chain complex.

Bs(−1) Bs(1) R(2)
1⊗1 7→αs⊗1−1⊗αs m

As BsBs ' Bs(1)⊕Bs(−1), the claim follows if we can “cancel out” Bs(1) in cohomological degree
0 and 1, respectively. To be more precise, we use the following diagram. (The vertical maps are
mutual inverses in Kb(R− bimgr).)

BsBs Bs(1)⊕Bs(1) R(2)

Bs(−1) Bs(1) R(2)

BsBs Bs(1)⊕Bs(1) R(2)

−ja

(1⊗m,m⊗1)

(f,g) 7→f−g

m⊕(−m)

Id

1⊗1 7→αs⊗1⊗1−1⊗αs⊗1

1⊗17→αs⊗1−1⊗αs

id⊕0

m

Id

(1⊗m,m⊗1) m⊕(−m)

Also, there exists a quasi-isomorphism

Bs(−1) Bs(1) R(2)

R(−2)

1⊗1 7→αs⊗1−1⊗αs m

ma

Thus, FsFs ' R(−2) in Db(R − bimgr). However, it is not a homotopy equivalence. Indeed,
otherwise we would have Fs ' Fs−1(−2), but it can be easily seen to be false.

Exercise 1.2. Prove that Fs ' Fs−1(−2). (Hint: try to construct homotopy equivalences between
Fs and Fs−1(−2). What are the degree zero endomorphisms of Bs?)

Exercise 1.3. Show that FsFs · · ·Fs (m terms) is homotopy equivalent to

Bs(1−m) Bs(3−m) · · · Bs(m− 1) R(m)
d0 d1 dm−2 m

where differentials are given by

dm−2, dm−4, · · · = 1⊗ 1 7→ αs ⊗ 1− 1⊗ αs, dm−3, dm−5, · · · = 1⊗ 1 7→ αs ⊗ 1 + 1⊗ αs.

Now we assume s, t ∈ S are given. If mst = 2, then indeed it is not hard to show that
FsFt ' FtFs ∈ Kb(R − bimgr), since BsBt ' BtBs ' Bst. What if mst = 3? We want to
show that FsFtFs ' FtFsFt ∈ Kb(R − bimgr). Equivalently, we will show that Fs[1]Ft[1]Fs[1] '
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Ft[1]Fs[1]Ft[1], where [i] is the cohomology shift.1 Fs[1]Ft[1]Fs[1] is expressed as the following
cube-shaped diagram.

BsBt(1) Bs(2)

BsBtBs BsBs(1) Bt(2) R(3)

BtBs(1) Bs(2)

The solid arrows are multiplication maps and the dashed ones are their negatives. From [EK10], we
have a homotopy equivalence which is denoted by squiggling arrows in the following diagram.

BsBt(1) Bs(2)

BsBtBs BsBs(1) Bt(2) R(3)

BtBs(1) Bs(2)

BtBs(1) Bt(2)

BtBsBt BtBt(1) Bs(2) R(3)

BsBt(1) Bt(2)

?s Idfs gs

Here, ?s, fs, gs are defined as follows.

• ?s is the projection BsBtBs → Bsts composed with the injection Bsts ↪→ BtBsBt. It satisfies

1⊗ 1⊗ 1⊗ 1 7→ 1⊗ 1⊗ 1⊗ 1,

1⊗ (2αs + αt)⊗ 1⊗ 1 7→ (αs + 2αt)⊗ 1⊗ 1⊗ 1 + 1⊗ 1⊗ 1⊗ (αs + 2αt).

Note that 1⊗1⊗1⊗1, 1⊗ (2αs+αt)⊗1⊗1 generate BsBtBs as an R-bimodule. The reason we
choose 1⊗(2αs+αt)⊗1⊗1 as a second generator is that 1⊗(2αs+αt)⊗1⊗1 = 1⊗1⊗(2αs+αt)⊗1,
i.e. 2αs + αt is fixed by t. Also, we have that ?t?s = (1 − es) = Id + ma

t j
a
s jsmt, which is the

projection idempotent BsBtBs → Bsts defined in Boris’ talk. (There, we defined e = −ma
t j
a
s jsmt

and the corresponding idempotent was written 1− e.)

1This shift is introduced so that we can directly use the result of [EK10]. If one wants to compute FsFtFs, signs
of some maps should be changed accordingly.
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• fs =

 0 −ma
t ⊗ js Id

−(1− x)ms ⊗ jat jatm
a
tmsjs −xjat ⊗ms

Id −js ⊗ma
t 0


• gs =

 0 (1− x)Id 0
Id 0 Id
0 xId 0


Here, x ∈ k is arbitrary. The homotopy inverse is similarly defined, by switching s and t. We need
to show that their composition is homotopy equivalent to the identity; the corresponding chain
homotopy is given by the arrows with double lines in the following diagram.

BsBt(1) Bs(2)

BsBtBs BsBs(1) Bt(2) R(3)

BtBs(1) Bs(2)

BsBt(1) Bs(2)

BsBtBs BsBs(1) Bt(2) R(3)

BtBs(1) Bs(2)

?t?s=1−e Id

h3

ftfs

h1

gtgs
h2

Here, we have

ftfs =

 0 −ma
s ⊗ jt Id

−(1− x)mt ⊗ jas jasm
a
smtjt −xjas ⊗mt

Id −jt ⊗ma
s 0

 0 −ma
t ⊗ js Id

−(1− x)ms ⊗ jat jatm
a
tmsjs −xjat ⊗ms

Id −js ⊗ma
t 0


=

 Id −js ⊗ma
t 0

−xjas ⊗mt 2(1− x)Lαt
jas js + 2xjas jsRαt

−(1− x)mt ⊗ jas
0 −ma

t ⊗ js Id

 ,
gtgs =

 0 (1− x)Id 0
Id 0 Id
0 xId 0

 0 (1− x)Id 0
Id 0 Id
0 xId 0

 =

(1− x)Id 0 (1− x)Id
0 Id 0
xId 0 xId

 .
Here, Lαt

, Rαt
are left and right multiplication by αt, respectively. Chain homotopy maps are

defined as follows. (y ∈ k is arbitrary.)

h1 =
[
0 ma

t j
a
s js 0

]
, h2 =

 0 0 0
−yjs 0 (1− y)js

0 0 0

 , h3 = 0
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This proves that FsFtFs ' FtFsFt for mst = 3. See [Rou04, Section 3] for the proof in general
cases.

Remark. Indeed, FsFtFs is homotopy equivalent to

BsBt(1) Bs(2)

Bsts R(3)

BtBs(1) Bt(2)

with certain chain maps, which are symmetric with respect to s and t. Since Bsts ' Btst, the
relation FsFtFs ' FtFsFt follows directly. However, it is not easy to show that the chain above is
indeed homotopy equivalent to FsFtFs.

In sum, we have the following theorem.

Theorem 1.4. [Rou04, Proposition 3.4] The map s 7→ Fs extends to a morphism from BW to the
group of isomorphism classes of invertible objects of Kb(R− bimgr). Furthermore, its image lies in
Kb(SBimgr), the category of graded Soergel bimodules.

1.4. A strict monoidal category BW . In fact, we can proceed further; for w̃ ∈ BW , let t1 · · · tr, u1 · · ·us
be two words of w̃ with alphabet S ∪ S−1. Then Ft1 · · ·Ftm ' Fu1

· · ·Fun
, and furthermore

HomKb(R−bimgr)(Ft1 · · ·Ftm , Fu1
· · ·Fun

) ' EndKb(R−bimgr)(R) ' k

HomDb(R−bimgr)(Ft1 · · ·Ftm , Fu1
· · ·Fun

) ' EndDb(R−bimgr)(R) ' k

Thus the canonical map

HomKb(R−bimgr)(Ft1 · · ·Ftm , Fu1
· · ·Fun

)→ HomDb(R−bimgr)(Ft1 · · ·Ftm , Fu1
· · ·Fun

)

is an isomorphism. Recall that we already have a canonical isomorphism

Rt1 · · ·Rtm → Ru1 · · ·Run : 1⊗ · · · ⊗ 1 7→ 1⊗ · · · ⊗ 1.

For each w̃ ∈ BW , we consider the system {Ft1 · · ·Ftm} of functors with isomorphisms Ft1 · · ·Ftm →
Fu1
· · ·Fun

which descends to such a canonical isomorphism as above.

We define Gw as the limit of this direct system, which is unique up to a unique isomorphism.
Then for w̃, w̃′ ∈ BW , there are unique isomorphisms Gw̃Gw̃′ → Gw̃w̃′ and G∅ → R. We consider
the full subcategory BW of Kb(R−bimgr) with objects {Gw}w∈BW

. Also define G∗v := Gv−1 . Then,
we have the following theorem.

Theorem 1.5. [Rou04, Theorem 3.7] The category BW is a strict rigid monoidal category, and
w̃ 7→ Gw̃ gives a strong action of BW on Kb(R−modgr).

As a result, the “decategorification” of BW is a quotient of BW . Rouquier conjectured that it
is indeed the same as BW , i.e. the action is faithful. Some partial answers to this conjecture are
known: [KS02] for type A, [BT11] for type ADE, and [Jen17] for finite type in general.
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2. Khovanov-Rozansky homology and knot invariants

In this section, we relate Rouquier complexes and Khovanov-Rozansky homology, which is a
certain invariant of links. We will see that one can calculate HOMFLY-PT polynomials from such
complexes.

2.1. Hochschild homology. We define MR := M/[R,M ] = R ⊗Ren M , i.e. taking coinvariants.
Here, Ren := R⊗kR is the enveloping algebra of R. Then the functor M 7→MR is right exact and
we define

HHi(R,M) := TorR
en

i (R,M), HH(R,M) :=
⊕
i≥0

HHi(R,M).

called Hochschild homology of M . Similarly, one can define Hochschild cohomology as a derived
functor of taking invariants. Indeed, for a polynomial algebra R we have

HHi(R,M) ' HHn−i(R,M),

which comes from the self-duality of the Koszul resolution of R. But this isomorphism does not
hold for general R.

How can we calculate such homology? Recall that R = k[α1, · · · , αn]. Henceforth we identify
Ren = k[x1, · · · , xn, y1, · · · , yn] and R = Ren/(x1 − y1, · · · , xn − yn). We have a Koszul com-
plex

0→ Λn(Ren)n(−2n)→ · · · → Λ2(Ren)n(−4)→ (Ren)n(−2)
♣−→ Ren → 0

where

♣ = (f1, · · · , fn) 7→ (x1 − y1)f1 + · · · (xn − yn)fn.

It gives a projective resolution of R as an Ren-module. Therefore for any Ren-module M , HH(M)
is the homology of

0→ Λn(Ren)n ⊗Ren M(−2n)→ · · · → Λ2(Ren)n ⊗Ren M(−4)→Mn(−2)→M → 0.

2.2. Hochschild homology of Rouquier complexes. Now let w be a word with alphabet S∪S−1
and consider Fw. If l(w) = r, then Fw consists of r + 1 terms, i.e.

Fw = · · · → 0→ F−r−1w → · · · → F 0
w → 0→ · · ·

By applying HH on this sequence, we have

HH(Fw) = · · · → 0→ HH(R,F−r−1w )→ · · · → HH(R,F 0
w) → 0→ · · ·

where each HH(R,F iw) is a bigraded k-vector space, where the bigrading comes from (1) the graded

R-bimodule structure of F iw and (2) the grading of Hochschild homology. Now we define HHH(Fw)

as the cohomology of this sequence. This is then a triply-graded k-vector space with (bimodule
grading, Hochschild grading, cohomological grading). This turns out to be strongly related to the
geometry of the knot (or link in general) represented by w as the following theorem shows.

Theorem 2.1. [Kho07, Theorem 1] Up to a grading shift, HHH(Fw) only depends on the closure of
the braid represented by w, say σ. This homology theory is isomorphic to the reduced link homology
H(σ) defined by Khovanov and Rozansky (up to an affine transformation on the tri-grading.)
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One can check that H and HHH are defined in an analogous manner. The proof of the second
part in [Kho07] uses this similarity. The first part follows from this result and the fact that H
only depends on the closure of the braid σ. Indeed, we already know that Rouquier complexes only
depend on the image of the word w in BW . However, if we take the closure, then we also need to
consider the following “Markov moves”, which result in the same link if one takes the closure of
braids.

It is easy to prove the first part concerning the first Markov move; it suffices to show that
HHH(A•Fs) ' HHH(FsA

•) for any A• ∈ Kb(SBimgr) and s ∈ S. But we have

A•Fs = · · · → Ai−1Bs ⊕Ai−2(1)→ AiBs ⊕Ai−1(1)→ Ai+1Bs ⊕Ai(1)→ · · ·
FsA

• = · · · → BsA
i−1 ⊕Ai−2(1)→ BsA

i ⊕Ai−1(1)→ BsA
i+1 ⊕Ai(1)→ · · ·

Now the result follows from the fact that (MN)R ' (NM)R canonically (i.e. the coinvariants of
MN and NM are isomorphic).

2.3. Connection with HOMFLY-PT polynomials. For each link σ, one can attach a unique
Laurent polynomial P (σ) = P (σ)(a, z) with certain properties, called the HOMFLY-PT polynomial
[FYH+85]. It is characterized by the following properties.

(1) P (unknot) = 1

(2) aP (L+) − a−1P (L−) = zP (L0) for links L+, L−, L0 that are isomorphic to one another
except one part, which is described as follows.

Jones polynomials and Alexander polynomials are the specializations of HOMFLY-PT polynomials:
P (t−1, t1/2 − t−1/2), P (1, t1/2 − t−1/2), respectively.

One property of H is that its Euler characteristic gives the HOMFLY-PT polynomial of the
corresponding link. Here, we deal with a simple example. (This is the dual version of [Kho07, pp.15–
16].) Suppose n = 1, thus R = k[α]. We also identify Ren = k[x, y]. Let S = {s}. We calculate
the HOMFLY-PT polynomial corresponding to sm ∈ BW . We assume that m is odd, so that the
closure of the braid is a knot, not just a link.
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From Exercise 1.3, Fs · · ·Fs (m terms) is equivalent to the following chain complex.

Bs(1−m) Bs(3−m) · · · Bs(m− 1) R(m)
d0 d1 dm−2 m

We take HH on this sequence. First, the Koszul complex of R is very simple in this case.

0→ k[x, y](−2)
1 7→x−y−−−−−→ k[x, y] → 0

Tensoring with R over Ren, we have 0→ R(−2)
0−→ R → 0, thus

HH0(R,R) = R, HH1(R,R) = R(−2), HHi(R,R) = 0 otherwise.

If we tensor with Bs over Ren, then we have 0→ Bs(−2)
1⊗17→α⊗1−1⊗α−−−−−−−−−−−→ Bs → 0, thus

HH0(R,Bs) = R(1), HH1(R,Bs) = R(−3), HHi(R,Bs) = 0 otherwise.

Therefore, the zeroth and the first homology of HHH(Fs · · ·Fs) is

R(2−m) R(4−m) · · · R(m) R(m)

R(−2−m) R(−m) · · · R(m− 4) R(m− 2)

HH0(d0) HH0(d1) HH0(dm−2) Id

HH1(d0) HH1(d1) HH1(dm−2) 2α

where

HH0(dm−2),HH0(dm−4), · · · = 0, HH0(dm−3),HH0(dm−5), · · · = 1 7→ 2α,

HH1(dm−2),HH1(dm−4), · · · = 0, HH1(dm−3),HH1(dm−5), · · · = 1 7→ 2α.

Thus, we have nontrivial homology isomorphic to k at (m− 4, 0, 1), (m− 8, 0, 3), · · · , (2−m, 0,m−
2), (m, 1, 1), (m−4, 1, 3), · · · , (2−m, 1,m). (Recall that the trigrading is given by (bimodule grading,
Hochschild grading, cohomological grading).) Therefore, if we let

Pm(x, y, z) :=
∑
i,j,k

xiyjzk dim HHH(i,j,k)(Fs · · ·Fs),

then it follows that

Pm(x, y, z) =
x−m

(
zx2m

(
x4y + 1

)
− x2zm

(
yz2 + 1

))
x4 − z2

.

Thus the Euler characteristic of HHH with respect to the second grading is

Pm(x,−1, z) =
x−m

(
x2
(
z2 − 1

)
zm −

(
x4 − 1

)
zx2m

)
x4 − z2

.

We put x 7→ x−1/2z−1/4 and z 7→ x−1z1/2, and multiply −x 3m
2 z−

m
4 to get

f(m) := (−x 3m
2 z−

m
4 )Pm(x−1/2z−1/4,−1, x−1z1/2) =

xm−1z
1−m

2 (−1 + zm+1 + x2(z − zm)))

z2 − 1
.

For example, we have

f(1) = 1, f(3) = −x4 + x2z +
x2

z
, f(5) = −x6z − x6

z
+ x4z2 +

x4

z2
+ x4

f(7) = −x8z2 − x8

z2
− x8 + x6z3 +

x6

z3
+ x6z +

x6

z
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We claim that these are HOMFLY-PT polynomials. Indeed, if we let g(m) be the usual HOMFLY-
PT polynomial of the knot (m, 1), then from [kno] we have

g(1) = 1, g(3) = −a4 + a2z2 + 2a2, g(5) = −a6z2 − 2a6 + a4z4 + 4a4z2 + 3a4,

g(7) = −a8z4 − 4a8z2 − 3a8 + a6z2 + 6a6z4 + 10a6z2 + 4a6

If we substitute a 7→ x and z 7→ z1/2 − z1/2, then they become the same as f(m).
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