
INTRODUCTION TO DEFORMATION THEORY

BENJAMIN SCHMIDT

Abstract. We give an introduction to deformation theory with a special focus on the moduli
space of semistable sheaves and the Quot-scheme. These are notes to a talk given during Spring
2016 at the graduate seminar on moduli of sheaves on K3 surfaces joint between MIT and NEU.
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1. Basic Ideas

The goal of deformation theory is to understand the local structure of various moduli spaces. If
you are not convinced of the importance of non reduced schemes, deformation theory will change
your mind. For a given scheme M over an algebraically closed field k (this is not strictly necessary)
we will study morphisms from Spec(A) to M for any local artinian algebra A over k.

The first question in this direction is what the tangent space of a given point on some moduli
space is. This can be studied with maps from Spec(D) for D = k[t]/(t2). This algebra is usually
called the dual numbers. By X we will denote a projective scheme over k. Recall that the tangent
space TP (X) of a rational point P ∈ X is given by Hom(mP /m

2
P , k) where mP is the maximal

ideal in the local ring OX,P . The basis for computing tangent spaces in the moduli setting is the
following exercise [Har77][Exercise II.2.8].

Proposition 1.1. Let P : Spec(k)→ X be a rational point. Then there is a natural bijection

TP (X) ∼= {f : Spec(D)→ X : f| Spec(k) = P} =: T.

Proof. The question is local and we can assume X = Spec(R). Then P corresponds to a maximal
ideal m ⊂ R such that R/m ∼= k. We get

T ∼= {f : R→ D : f−1((t)) = m}
∼= {f : R/m2 → D : f−1((t)) = m}
∼= Hom(m/m2, k) = TP (X)

For the last equality we use (t) ∼= k as k-vector spaces. �

A priori T does not have the structure of a k-vector space. For the purpose of this talk we give
it such a structure by the bijection outlined in the proof.
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Example 1.2. Let H be an ample divisor on X and let p ∈ Z[t]. By M s
H,p(X) we denote the moduli

space of H-Gieseker stable sheaves with Hilbert polynomial p. Assume that this is a fine moduli
space, i.e. there is a natural bijection between morphisms from a finite type scheme Z to M s

H,p(X)
and flat families of semistable objects with Hilbert polynomial p over Z. Moreover, we fix a stable
sheaf F that is parametrized in this moduli space. Then the universal property and the previous
proposition lead to a natural bijection between T[F ](M

s
H,p(X)) and sheaves F ′ ∈ Coh(X×kD) that

are flat over D together with a morphism F ′ → F that restricts to an isomorphism. Such an F ′ is
called a first order deformation of F .

We denote the category of local artinian algebras over k by Artk. Morphisms in this category are
homomorphisms of k-algebras such that the inverse image of the maximal ideal is the maximal ideal.
For any A ∈ Artk we write XA = X ×k A. Moreover, the unique morphism Spec(k) → Spec(A)
induces a closed embedding X ↪→ XA that we will use to restrict sheaves from XA to X.

Definition 1.3. Let E ∈ Coh(X) be a coherent sheaf and A ∈ Artk a local artinian algebra over k.
A deformation of E over A is a coherent sheaf E′ ∈ Coh(XA) flat over A together with a morphism
of OX -modules E′ → E that restricts to an isomorphism on X. Two deformations are equivalent if
they are isomorphic as sheaves over XA and the isomorphism commutes with the two morphisms
to E.

2. First Order Deformations of Sheaves

We have a unique morphism k → A in Artk. It induces a morphism π : Spec(A) → Spec(k).
By abuse of notation we call the induced morphism XA → X for any projective scheme X still π.
Recall that for any coherent sheaf A of OX -algebras we write Coh(A) for the category of coherent
sheaves on X with an A-module structure.

Lemma 2.1. The functor π∗ : Coh(XD)→ Coh(π∗OXD
) is an equivalence of categories. Morever,

we have π∗OXD
= OX ⊗k D = OX ⊕ tOX .

Proof. Exercise. �

The following basic lemma is our main tool for dealing with flatness.

Lemma 2.2 ([HL10][Lemma 2.1.3]). Let S0 ⊂ S be a closed subscheme defined by a nilpotent ideal
sheaf I. A coherent sheaf E ∈ Coh(S) is flat over S if and only if E|S0

is flat over S0 and the
natural map I ⊗OS

E → E is injective.

We are now ready to determine first order deformations of sheaves. We follow the proof from
[Har10][Theorem 2.7].

Theorem 2.3. Let E be a coherent sheaf on X. There is a natural bijection between the set of
first order deformation of E up to equivalence and Ext1(E,E). If [E] ∈M s

H,p(X) and M s
H,p(X) is

a fine moduli space, then T[E](M
s
H,p(X)) ∼= Ext1(E,E).

Proof. Let E′ be a deformation of E over D. Tensoring the exact sequence of D-modules

0→ k
t·→ D → k → 0

with E′ leads to an exact sequence

0→ E
t·→ E′ → E → 0.

Therefore, E′ represents an element in Ext1(E,E). The other way around assume E′ is an arbitrary
element in Ext1(E,E). Then we need to give E′ the structure of an OXD

-module. By Lemma 2.1
this can be done by specifying the action of t. We define this to be the composition of E′ → E
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with E → E′. This definition makes the restriction of E′ → E become an isomorphism. Flatness
of E′ follows from Lemma 2.2. The second part of the statement about tangent spaces follows as
explained in Example 1.2. �

The theorem is still true even if M s
H,p(X) is not a fine moduli space. In order to prove this we

will need to study higher order deformations.

3. Higher Order Deformations of Sheaves

In order to study higher order deformation of E ∈ Coh(X) we introduce the deformation functor
DE : Artk → Set that maps A to the set of deformations of E over A. Let σ : B � A be a
surjection in Artk. Then there are two natural questions.

(1) What is the image of DE(σ), i.e. which deformations on A can be further lifted to B?
(2) What are the fibers of DE(σ), i.e. if a deformation can be lifted what are all its lifts?

Definition 3.1. A short exact sequence 0→ I → B → A→ 0 with A,B ∈ Artk and I an ideal in
B is called a small extension if mA · I = 0, where mA is the maximal ideal in A.

Let G be a group and S be a set with a G-action. Recall that S is called a G-torsor if there is
s ∈ S such that the action of G on s induces a bijection between G and S. Moreover, for sheaves
E,F ∈ Coh(X) and i ∈ Z we write hom(E,F ) = dim Hom(E,F ) and exti(E,F ) = dim Exti(E,F ).

Theorem 3.2 ([HL10][Section 2.A.6]). Let

0→ I → B
σ→ A→ 0

be a small extension and E be a coherent sheaf on X satisfying Hom(E,E) = C.

(1) The non trivial fibers of DE(σ) are Ext1(E,E)⊗k I-torsors.
(2) There is a map oσ : DE(A) → Ext2(E,E) ⊗k I such that the image of DE(σ) is given by

o−1σ (0).
(3) The image of oσ lies in a subspace Ext20(E,E) ⊗ I, where Ext20(E,E) ⊂ Ext2(E,E) is of

dimension ext20(E,E) = ext2(E,E)− h2(OX).

Sketch of the Proof. Since I2 = 0 holds, I has an induced structure of an A-module coming from
its B-module structure. Any A-module is also a B-module via the morphism B � A. Let EA be
a deformation of E over A. Then we have I ⊗B EA = I ⊗A EA. Tensoring the exact sequence of
B-modules 0→ I → B → A→ 0 with EA shows

TorqB(EA, A) =


EA , q = 0

I ⊗A EA , q = 1

0 , otherwise.

By adjunction we have an isomorphism of functors

RHomOXA
(EA ⊗LB A, I ⊗A EA) ∼= RHomOXB

(EA, I ⊗A EA).

This induces a spectral sequence

E2
p,q = ExtpOXA

(TorqB(EA, A), I ⊗A EA)⇒ Extp+qOXB
(EA, I ⊗A EA)

that converges on the third sheet, due to our computation of TorqB(EA, A). In particular, the group

Ext1OXB
(EA, I ⊗A EA) fits into an exact sequence given by

0→ Ext1OXA
(EA, I ⊗A EA)→ Ext1OXB

(EA, I ⊗A EA)→

→ HomOXA
(I ⊗A EA, I ⊗A EA)→ Ext2OXA

(EA, I ⊗A EA).
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The first map is the one that simply extends OXA
-modules to OXB

-modules via B � A. For
the second map assume we have an extension E′ give by an element in Ext1OXB

(EA, I ⊗A EA).

Then the B-module structure induces an action of I on all these modules which we express in the
commutative diagram

I ⊗B I ⊗A EA
0
��

// I ⊗B E′

��

// I ⊗B EA
0
��

// 0

0 // I ⊗A EA // E′ // EA // 0.

The snake lemma and the isomorphism I ⊗B EA ∼= I ⊗A EA induce a map I ⊗A EA → I ⊗A EA.
Similarly to the proof for first order deformations, we want to give E′ a structure of B-modules
that restricts to EA. For that the action of I on E′ should be given by the map I⊗AEA → E′. We
can do that if and only if there are elements in Ext1OXB

(EA, I ⊗A EA) that map to the identity in

HomOXA
(I ⊗A EA, I ⊗A EA). That in turn can only happen if the image of the identity oσ(EA) ∈

Ext2OXA
(EA, I ⊗A EA) vanishes.

One has to use some form of cohomology and base change to show ExtiOXA
(EA, I ⊗A EA) ∼=

ExtiOX
(E,E)⊗k I for all i ∈ Z.

To prove part (iii) one needs to construct a trace map Tri : Exti(E,E) → H i(OX) and proof
that the obstruction lies in the kernel of Tr2. �

4. Deformations of Quotients

Very similarly to the case of sheaves we can study deformations of quotients E � F . That will
allow us to analyze the local geometry of Quot-schemes.

Definition 4.1. Let E � F be a quotient of coherent sheaves in X and A ∈ Artk a local artinian
algebra over k. By EA we denote the pullback of E from X to XA. A deformation of E � F
over A is a quotient EA � F ′ of coherent sheaves in XA where F ′ is flat over A whose restriction
E � F ′|X is isomorphic to E � F . Two deformations are equivalent if their kernels are identical.

As before we obtain a deformation functor D[E�F ] : Artk → Set.

The theorem describing this functor is very similar to the case of sheaves. A version in the
special case of Hilbert schemes is proven in [Har10][Theorem 6.2], while a more general version for
the case of the flag scheme is proven in [HL10][Section 2.A.7].

Theorem 4.2. Let
0→ I → B

σ→ A→ 0

be a small extension and E � F be a quotient of coherent sheaves on X. Moreover, we denote the
kernel of E � F by K.

(1) The non trivial fibers of D[E�F ](σ) are Hom(K,F )⊗k I-torsors.

(2) There is a map oσ : D[E�F ](A) → Ext1(K,F ) ⊗k I such that the image of D[E�F ](σ) is

given by o−1σ (0).

5. The Hilbert Scheme of Points on a Surface

The easiest non trivial example is perhaps the Hilbert scheme of n points on a smooth projective
surface X denoted by X [n]. The locus of reduced subschemes in X [n] is an open subset of the
symmetric product X(n) which is of dimension 2n. It is well known that X [n] is connected, but the
techniques are very different from those in these notes. Without using this fact, the following proof
will only show that there is a smooth connected component in X [n] of dimension 2n.
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Theorem 5.1. Let X be a smooth projective surface over k. Then X [n] is a smooth projective
variety of dimension 2n.

Proof. Let Z be a subscheme of X of dimension 0 and length n. We need to show that the tangent
space T[Z](X

[n]) has dimension 2n. By Theorem 4.2 part (1) and the universal property of the

Quot-scheme we get T[Z](X
[n]) = Hom(IZ ,OZ). By applying the functor Hom(·,OZ) to the exact

sequence 0→ IZ → OX → OZ → 0 we obtain the long exact sequence

0→ Hom(OZ ,OZ) = H0(OZ) = Cn
∼=→ Hom(OX ,OZ) = H0(OZ) = Cn 0→ Hom(IZ ,OZ)→

→ Ext1(OZ ,OZ)→ Ext1(OX ,OZ) = H1(OZ) = 0→ Ext1(IZ ,OZ)→
→ Ext2(OZ ,OZ) = Cn → Ext2(OX ,OZ) = H2(OZ) = 0→ Ext2(IZ ,OZ)→ 0.

Therefore, we can compute

hom(IZ ,OZ) = χ(IZ ,OZ) + n = 2n.

In order to actually prove the equality χ(IZ ,OZ) = n, let 0 → P • → IZ → 0 be an arbitrary
finite locally free resolution of IZ . We have both

∑
i dim(−1)ir(P i) = 1 and χ(P i,OZ) = n · r(P i).

Additivity of the Euler characteristic implies χ(IZ ,OZ) = n. �

6. Pro-Representability and Dimension Estimates

The moduli space of stable sheaves is not always a fine moduli space, but only a coarse moduli
space. This issue can be handled via the following theorem.

Theorem 6.1 ([HL10][Theorem 4.5.1]). Let E be an H-stable coherent sheaf on X with Hilbert

polynomial p and M = M s
H,p(X). Then the two functors DE and Hom(ÔM,[E], ·) are naturally

isomorphic, where both functors are going from Artk to Set and Hom is taken in the category of
local algebras over k.

If there is an isomorphism as in the theorem one says that DE is a pro-representable functor. The
notion of pro-representability can be thought of as having a fine moduli space locally. However,
the Zariski topology is too coarse for this to be precisely true.

In the previous example of Hilbert schemes of points on a surface, it is possible to compute the
dimension of the moduli space. In general this is much more difficult. Therefore, a homological
criterion for smoothness that does not involve knowing the dimension is very useful. In order to
obtain this we will have to use higher order deformations.

Theorem 6.2 ([HL10][Theorem 2.A.11]). For all H-stable sheaves E we have the inequality

ext1(E,E) ≥ dim[E]M
s
H,p(X) ≥ ext1(E,E)− ext20(E,E),

where dim[E]M
s
H,p(X) denotes the dimension of the component containing [E]. In particular, if

ext2(E,E)−h2(OX) = 0, then M s
H,p is smooth at [E]. Moreover, if dim[E]M

s
H,p(X) = ext1(E,E)−

ext20(E,E), then M s
H,p(X) is a complete intersection variety locally at [E].

Proof. Let R = ÔM,[E] and m ⊂ R be the maximal ideal. By the previous theorem and Theorem

3.2, we know that the tangent space at [E] has dimension d = dimkm/m
2 = ext1(E,E). By

standard properties of complete local rings, this implies R ∼= k[[t1, . . . , td]]/J for some ideal J . Let
r = ext20(E,E). All statements in the Theorem will follow if we can find r elements that generate
J .

The Artin-Rees Lemma says that there is K > 0 such that for all integers N > K we have

J ∩mN = mN−K(J ∩mK) ⊂ mJ.
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There is a small extension

0→ I =
J +mN

mJ +mN
→ B =

k[[t1, . . . , td]]

mJ +mN

σ→ A =
k[[t1, . . . , td]]

J +mN
→ 0.

Theorem 6.1 connects the quotient map R� A = R/mN to a deformation EA of E. The sheaf EA
can be lifted to B if and only if

oσ(EA) =
r∑
i=1

ψi ⊗ fi ∈ Ext20(E,E)⊗k I

vanishes, where ψ1, . . . , ψr is a basis of Ext20(E,E) and f1, . . . , fr ∈ J are lifts of f1, . . . , f r ∈ I.
We get another small extension of the form σ′ : C = B/(f1, . . . , f r) � A. The obstruction

oσ′(EA) =

r∑
i=1

ψi ⊗ fi ∈ Ext20(E,E)⊗k I/(f1, . . . , f r)

vanishes by definition. Therefore, we can lift EA to EC and using pro-representability again we get
a commutative diagram

k[[t1, . . . , td]]/J //

��

k[[t1, . . . , td]]/(J +mN )

k[[t1, . . . , td]]/(mJ + (f1, . . . , fr) +mn) // k[[t1, . . . , td]]/(J +mN ).

In particular, we get the inclusions

J ⊂ mJ + (f1, . . . , fr) +mN ⊂ J +mN .

Recall that J ∩ mN ⊂ mJ holds and intersect the previous inequality with J to obtain J =
mJ + (f1, . . . , fr). From standard isomorphism theorems we obtain

(mJ + (f1, . . . , fr) +mN )/mN ∼= (J +mN )/mN

∼= J/(J ∩mN ) � J/mJ.

In particular, f1, . . . f r generate J/mJ and Nakayama’s Lemma allows to conclude that f1, . . . , fr
generate J . �

7. Moduli of Sheaves on the Projective Plane

We finish the talk by determining smoothness in the special case of X = P2.

Theorem 7.1. The moduli space of stable sheaves on P2 is smooth.

Proof. Let E be a stable coherent sheaf on P2. Then Serre duality implies the isomorphism
Ext2(E,E) ∼= Hom(E,E(−3)). This group vanishes because both E and E(−3) are stable, but
µ(E) > µ(E(−3)). Theorem 6.2 finishes the proof. �

References

[Har77] R. Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathe-
matics, No. 52.

[Har10] R. Hartshorne. Deformation theory, volume 257 of Graduate Texts in Mathematics. Springer, New York,
2010.

[HL10] D. Huybrechts and M. Lehn. The geometry of moduli spaces of sheaves. Cambridge Mathematical Library.
Cambridge University Press, Cambridge, second edition, 2010.

6



Department of Mathematics, The Ohio State University, 231 W 18th Avenue, Columbus, OH 43210-
1174, USA

E-mail address: schmidt.707@osu.edu
URL: https://people.math.osu.edu/schmidt.707/

7


