Exercises on the affine Grassmannian

Pramod N. Achar

Lecture 1

- 1. Let R be a commutative ring.
 - (a) Show that $f \in R[[t]]$ is invertible if and only if its constant term is invertible in R.
 - (b) Let $f \in R((t))$, say $f = a_k t^k + a_{k+1} t^{k+1} + \cdots$. Show that f is invertible if and only if there is an integer m such that $a_k, a_{k+1}, \ldots, a_m$ are nilpotent, and a_{m+1} is invertible. In particular, if R is a field, then R((t)) is a field.
 - (c) Show that as an ind-variety, $\operatorname{Gr}_{\mathbb{G}_m} \cong \mathbb{Z}$ (i.e., a discrete countable set). On the other hand, use the previous part to show that $\operatorname{Gr}_{\mathbb{G}_m}$ is *not* a reduced ind-scheme (i.e., not a direct limit of reduced schemes).
- 2. Prove that every lattice in \mathbf{K}^n is in the $\operatorname{GL}_n(\mathbf{O})$ -orbit of a lattice with basis of the form

$$\{t^{a_1}\mathbf{e}_1, t^{a_2}\mathbf{e}_2, \dots, t^{a_n}\mathbf{e}_n\}$$

with $a_1 \ge a_2 \ge \cdots \ge a_n$. Moreover, the *n*-tuple (a_1, a_2, \ldots, a_n) is uniquely determined. We therefore obtain a bijection

$$\{\operatorname{GL}_n(\mathbf{O})\text{-orbits on }\operatorname{Gr}_{\operatorname{GL}_n}\} \xleftarrow{\sim} \{(a_1, a_2, \dots, a_n) \in \mathbb{Z}^n \mid a_1 \ge a_2 \ge \cdots a_n\}.$$

3. (a) Let $0 \le k < n$, and consider the following dominant coweight for GL_n :

$$\varpi_k = (\underbrace{1, \dots, 1}_k, \underbrace{0, \dots, 0}_{n-k}).$$

(These are called *minuscule* weights.) Show that $\operatorname{Gr}_{\varpi_k}$ is a closed $\operatorname{GL}_n(\mathbf{O})$ -orbit in Gr, and that it is isomorphic to the (ordinary) Grassmannian of (n-k)-dimensional subspaces of \mathbb{C}^n .

(b) Let $\lambda = (a_1, \ldots, a_n)$ be a dominant coweight for GL_n (so that $a_1 \ge \cdots \ge a_n$.) Let $m = a_1 - a_n$. Show that

$$\overline{\mathrm{Gr}_{\lambda}} = \left\{ \mathcal{L} \in \mathrm{Gr} \mid \begin{array}{c} \text{there is a sequence of lattices } t^{a_1} \mathcal{L}^{\circ} = \mathcal{L}_0 \subset \mathcal{L}_1 \subset \cdots \subset \mathcal{L}_m = \mathcal{L} \\ \text{such that } t\mathcal{L}_i \subset \mathcal{L}_{i-1} \text{ and } \dim_{\mathbb{C}} \mathcal{L}_i / \mathcal{L}_{i-1} = j, \text{ where } a_j > a_1 - i \geq a_{j+1} \end{array} \right\}$$

Moreover, $\operatorname{Gr}_{\lambda}$ is the open subset of $\overline{\operatorname{Gr}_{\lambda}}$ in which $\mathcal{L}_i = t^{-1}\mathcal{L}_{i-1} \cap \mathcal{L}$.

If this is too difficult, start with this warm-up problem: Assuming that the description above is correct, show that every lattice in $\overline{\operatorname{Gr}}_{\lambda}$ has valuation $a_1 + \cdots + a_n$. Then do Problem 7a in the special case of minuscule coweights, then Problem 7c, then come back to this problem.

4. (Lusztig 1981) Consider the weight $\lambda = (n, 0, \dots, 0)$ for GL_n . Let \mathcal{M} be the open subset of $\overline{\operatorname{Gr}_{\lambda}}$ consisting of lattices \mathcal{L} such that $\mathcal{L} \cap (t^{-1}\mathbb{C}[t^{-1}])^n = 0$. (In other words, \mathcal{L} contains no vector whose coordinates involve only strictly negative powers of t.) Show that \mathcal{M} is isomorphic to the affine variety \mathcal{N} of $n \times n$ nilpotent matrices.

(*Hint*: Let $\mathcal{L} \in \mathcal{M}$ and let $v \in \mathcal{L}$. Write v as $\sum_{j>-n} v_j t^j$, where $v_j \in \mathbb{C}^n$. The assumption that $\mathcal{L} \cap (t^{-1}\mathbb{C}[t^{-1}])^n = 0$ implies that $v_{-n+1}, v_{-n+2}, \ldots, v_{-1}$ are determined by v_0 . In fact, there is a linear map $x : \mathbb{C}^n \to \mathbb{C}^n$ such that $v_{-k} = x^k v_0$, and $x^n = 0$. The assignment $\mathcal{L} \mapsto x$ gives the desired map $\mathcal{M} \to \mathcal{N}$.)

- 5. Two lattices \mathcal{L} and \mathcal{L}' in \mathbf{K}^n are said to be *homothetic* if there is a nonzero scalar $s \in \mathbf{K}^{\times}$ such that $\mathcal{L} = s\mathcal{L}'$. Show that $\operatorname{Gr}_{\operatorname{PGL}_n}$ can be identified with the set of homothety classes of lattices.
- 6. Let $\{\mathbf{e}_1, \ldots, \mathbf{e}_n, \mathbf{f}_1, \ldots, \mathbf{f}_n\}$ be the standard basis for \mathbf{K}^{2n} . Equip \mathbf{K}^{2n} with the bilinear form:

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \langle \mathbf{f}_i, \mathbf{f}_j \rangle = 0 \text{ for all } i, j, \qquad \langle \mathbf{e}_i, \mathbf{f}_j \rangle = -\langle \mathbf{f}_j, \mathbf{e}_i \rangle = \delta_{ij}.$$

- (a) A symplectic lattice is a lattice $\mathcal{L} \subset \mathbf{K}^{2n}$ such that $\langle \cdot, \cdot \rangle$ restricts to a perfect **O**-valued pairing on \mathcal{L} . Show that $\operatorname{Gr}_{\operatorname{Sp}_{2n}}$ can be identified with the set of symplectic lattices.
- (b) Give a lattice-theoretic description of $\operatorname{Gr}_{\operatorname{PSp}_{2n}}$. (This affine Grassmannian has two connected components, one of which can be identified with $\operatorname{Gr}_{\operatorname{Sp}_{2n}}$. What does the other component consist of?)
- (c) Recall that $Sp_2 = SL_2$. How is this related to the description of Gr_{SL_2} from the lecture?
- (d) Give analogous descriptions of the affine Grassmannians of SO_{2n+1} and SO_{2n} .

Lecture 2

- 7. The following questions deal with the convolution space for GL_n . It might be a good idea to start with the special case where the coweights are minuscule.
 - (a) Let $\lambda = (a_1, \dots, a_n)$ and $\mu = (b_1, \dots, b_n)$ be two dominant coweights. Let $m = b_1 b_n$. Show that $\overline{\operatorname{Gr}}_{\lambda} \times \overline{\operatorname{Gr}}_{\mu} \subset \operatorname{Gr} \times \operatorname{Gr}$ can be identified with the set

$$\left\{ \begin{aligned} \mathcal{L} \in \overline{\mathrm{Gr}_{\lambda}}, \text{ and} \\ & \left\{ (\mathcal{L}, \mathcal{L}') \; \middle| \; \begin{array}{c} \text{there is a sequence of lattices } t^{b_1} \mathcal{L} = \mathcal{L}'_0 \subset \mathcal{L}'_1 \subset \cdots \subset \mathcal{L}'_m = \mathcal{L}' \\ & \text{such that } t\mathcal{L}'_i \subset \mathcal{L}'_{i-1} \text{ and } \dim_{\mathbb{C}} \mathcal{L}'_i / \mathcal{L}'_{i-1} = j, \text{ where } b_j > b_1 - i \geq b_{j+1}. \end{aligned} \right\}$$

Moreover, show that the image of $m: \overline{\operatorname{Gr}_{\lambda}} \times \overline{\operatorname{Gr}_{\mu}} \to \operatorname{Gr}$ is $\overline{\operatorname{Gr}_{\lambda+\mu}}$.

(b) Let $\lambda^{(1)}, \ldots, \lambda^{(k)}$ be a sequence of dominant coweights. Generalize the previous part to give a description of $\overline{\operatorname{Gr}_{\lambda^{(1)}}} \approx \cdots \approx \overline{\operatorname{Gr}_{\lambda^{(k)}}}$.

In fact, upon further reflection, I think you should start with the following problem:

(c) Let $\lambda = (a_1, \ldots, a_n)$, and let $m = a_1 - a_n$. Define integers $k_{m-1}, k_{m-2}, \ldots, k_1, k_0$ by the condition that $a_{k_i} \ge a_1 - i > a_{k_i+1}$. Show that

$$m: \operatorname{Gr}_{(a_n,\dots,a_n)} \widetilde{\times} \operatorname{Gr}_{\varpi_{k_{m-1}}} \widetilde{\times} \cdots \widetilde{\times} \operatorname{Gr}_{\varpi_{k_0}} \to \overline{\operatorname{Gr}_{\lambda}}$$

is a resolution of singularities.

- 8. Determine the fibers of the following convolution morphisms for GL_2 :
 - (a) $m: \operatorname{Gr}_{(1,0)} \times \operatorname{Gr}_{(1,0)} \to \overline{\operatorname{Gr}_{(2,0)}}$. (Answer: For $x \in \operatorname{Gr}_{(2,0)}$, the fiber is a point. For $x \in \operatorname{Gr}_{(1,1)}$, the fiber is isomorphic to \mathbb{P}^1 .)
 - (b) $m : \operatorname{Gr}_{(1,0)} \times \operatorname{Gr}_{(1,0)} \times \operatorname{Gr}_{(1,0)} \to \overline{\operatorname{Gr}_{(3,0)}}$. (Answer: For $x \in \operatorname{Gr}_{(3,0)}$, the fiber is a point. For $x \in \operatorname{Gr}_{(2,1)}$, the fiber looks like two copies of \mathbb{P}^1 meeting at a point.)
 - (c) Carry out the same computation for some other weights of your own choosing. If you are feeling adventurous, go up to GL₃.
- 9. Let Φ^+ be the set of positive roots, and let $\rho = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha$. The *q*-analogue of the Kostant partition function is the family of polynomials $P_{\nu}(q)$ (where $\nu \in \mathbf{X}_*$ and q is an indeterminate) given by the generating function

$$\prod_{\alpha \in \Phi^+} \frac{1}{1 - qe^{\alpha}} = \sum_{\nu \in \mathbf{X}_*} P_{\nu}(q) e^{\nu}.$$

For $\lambda \in \mathbf{X}^+_*$ and $\mu \in \mathbf{X}_*$, the *q*-analogue of the weight multiplicity is the polynomial $M^{\mu}_{\lambda}(q)$ given by

$$M^{\mu}_{\lambda}(q) = \sum_{w \in W} (-1)^{\ell(w)} P_{w(\lambda+\rho)-(\mu+\rho)}(q).$$

Recall from the lecture that Lusztig proved that when λ and μ are both dominant, we have

$$M_{\lambda}^{\mu}(q) = \sum_{i \ge 0} \operatorname{rank} \mathcal{H}^{-\dim \operatorname{Gr}_{\mu} - i}(\operatorname{IC}_{\lambda}|_{\operatorname{Gr}_{\mu}}) q^{i/2}$$

Compute $P_{\nu}(q)$ and $M_{\lambda}^{\mu}(q)$ in general for SL_2 . Check that $M_{\lambda}^{\mu}(1)$ is always the dimension of the μ -weight space of $L(\lambda)$ (even if μ is not dominant!). Check that when μ is dominant, $M_{\lambda}^{\mu}(q)$ has nonnegative coefficients.

Here are the answers: identifying \mathbf{X}_* with \mathbb{Z} , we have

$$P_{\nu}(q) = \begin{cases} q^{\nu/2} & \text{if } \nu \in 2\mathbb{Z}_{\geq 0}, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$M_{\lambda}^{\mu}(q) = \begin{cases} 0 & \text{if } \mu > \lambda \text{ or } \lambda \not\equiv \mu \pmod{2}, \\ q^{(\lambda-\mu)/2} & \text{if } -\lambda \le \mu \le \lambda \text{ and } \lambda \equiv \mu \pmod{2}, \\ q^{(\lambda-\mu)/2} - q^{(-\lambda-\mu-2)/2} & \text{if } \mu \le -\lambda - 2 \text{ and } \lambda \equiv \mu \pmod{2}. \end{cases}$$

- 10. (This question requires some familiarity with calculating with perverse sheaves.) Use Problem 8 to compute $IC_{(1,0)} \star IC_{(1,0)}$ and $IC_{(1,0)} \star IC_{(1,0)} \star IC_{(1,0)}$. Use these calculations to determine the stalks of $IC_{(2,0)}$ and $IC_{(3,0)}$. Check that these agree with the *q*-analogue of the weight multiplicity that you computed in the previous question.
- 11. In the affine Grassmannian of GL_3 , determine the space $S_{(0,0,0)} \cap \overline{Gr}_{(1,0,-1)}$. This variety should have two irreducible components, each of dimension 2. The two components provide a basis for the zero weight space of the adjoint representation of GL_3 .

(*Hint:* One could equivalently work in $S_{(1,1,1)} \cap \overline{\operatorname{Gr}_{(2,1,0)}}$. For the latter, it might be helpful to start by looking at the open subset $\mathcal{M} \subset \overline{\operatorname{Gr}_{(3,0,0)}}$ from Problem 4. Then this MV cycle calculation turns into a problem about 3×3 nilpotent matrices.)

Lecture 3

12. Let \check{B} be the Borel subgroup of \check{G} corresponding to the *negative* roots, and let \check{u} be the Lie algebra of its unipotent radical. It follows from results of Brylinski that for $\lambda \in \mathbf{X}^+_*$ and $\mu \in \mathbf{X}_*$, we have

$$M^{\mu}_{\lambda}(q) = \sum_{n \ge 0} \left(\sum_{i \ge 0} (-1)^{i} \operatorname{dim} \operatorname{Ext}^{i}_{\check{B}}(L(\lambda), \operatorname{Sym}^{n}(\check{\mathfrak{u}}^{*}) \otimes \mathbb{C}_{\mu}) \right) q^{n}.$$

Prove this directly for $\check{G} = SL_2$. (*Hint:* For this group, nonzero Ext-groups can occur only for i = 0, 1. If μ is dominant, then only i = 0 can occur.)

- 13. The first part of this question requires some familiarity with perverse sheaves. However, you can treat the first part as a "black box" and then work out the second part.
 - (a) Let $G = \text{PGL}_2$, and let $\lambda, \mu \in \mathbf{X}_*$. Assume that $I \cdot \mathbf{t}_{\mu} \subset \overline{I \cdot \mathbf{t}_{\lambda}}$. Prove that $\text{IC}(\overline{I \cdot \mathbf{t}_{\lambda}})|_{I \cdot \mu}$ is isomorphic to the shifted constant sheaf $\underline{\mathbb{C}}[\dim I \cdot \mathbf{t}_{\lambda}]$. (*Hint:* First treat the case where λ is dominant, using the the calculation of $M^{\mu}_{\lambda}(q)$ from Problem 9. Then, if λ is not dominant, show that $\overline{I \cdot \mathbf{t}_{\lambda}}$ is isomorphic to the closure of a dominant *I*-orbit on the other connected component of Gr_{PGL_2} .)
 - (b) Use the result of the previous part to compute the characters of simple modules in the principal block of the quantum group $U_q(\mathfrak{sl}_2)$ specialized at a root of unity.