
Exercises on the affine Grassmannian

Pramod N. Achar

Lecture 1

1. Let R be a commutative ring.

(a) Show that f ∈ R[[t]] is invertible if and only if its constant term is invertible in R.

(b) Let f ∈ R((t)), say f = akt
k + ak+1t

k+1 + · · · . Show that f is invertible if and only if there is an
integer m such that ak, ak+1, . . . , am are nilpotent, and am+1 is invertible. In particular, if R is a
field, then R((t)) is a field.

(c) Show that as an ind-variety, GrGm
∼= Z (i.e., a discrete countable set). On the other hand, use the

previous part to show that GrGm
is not a reduced ind-scheme (i.e., not a direct limit of reduced

schemes).

2. Prove that every lattice in Kn is in the GLn(O)-orbit of a lattice with basis of the form

{ta1e1, t
a2e2, . . . , t

anen}

with a1 ≥ a2 ≥ · · · ≥ an. Moreover, the n-tuple (a1, a2, . . . , an) is uniquely determined. We therefore
obtain a bijection

{GLn(O)-orbits on GrGLn}
∼←→ {(a1, a2, . . . , an) ∈ Zn | a1 ≥ a2 ≥ · · · an}.

3. (a) Let 0 ≤ k < n, and consider the following dominant coweight for GLn:

$k = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

).

(These are called minuscule weights.) Show that Gr$k is a closed GLn(O)-orbit in Gr, and that
it is isomorphic to the (ordinary) Grassmannian of (n− k)-dimensional subspaces of Cn.

(b) Let λ = (a1, . . . , an) be a dominant coweight for GLn (so that a1 ≥ · · · ≥ an.) Let m = a1 − an.
Show that

Grλ =

{
L ∈ Gr

∣∣∣ there is a sequence of lattices ta1L◦ = L0 ⊂ L1 ⊂ · · · ⊂ Lm = L
such that tLi ⊂ Li−1 and dimC Li/Li−1 = j, where aj > a1 − i ≥ aj+1

}
Moreover, Grλ is the open subset of Grλ in which Li = t−1Li−1 ∩ L.

If this is too difficult, start with this warm-up problem: Assuming that the description above is
correct, show that every lattice in Grλ has valuation a1 + · · · + an. Then do Problem 7a in the
special case of minuscule coweights, then Problem 7c, then come back to this problem.

4. (Lusztig 1981) Consider the weight λ = (n, 0, . . . , 0) for GLn. Let M be the open subset of Grλ
consisting of lattices L such that L ∩ (t−1C[t−1])n = 0. (In other words, L contains no vector whose
coordinates involve only strictly negative powers of t.) Show thatM is isomorphic to the affine variety
N of n× n nilpotent matrices.

(Hint: Let L ∈ M and let v ∈ L. Write v as
∑
j>−n vjt

j , where vj ∈ Cn. The assumption that

L∩ (t−1C[t−1])n = 0 implies that v−n+1, v−n+2, . . . , v−1 are determined by v0. In fact, there is a linear
map x : Cn → Cn such that v−k = xkv0, and xn = 0. The assignment L 7→ x gives the desired map
M→N .)
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5. Two lattices L and L′ in Kn are said to be homothetic if there is a nonzero scalar s ∈ K× such that
L = sL′. Show that GrPGLn can be identified with the set of homothety classes of lattices.

6. Let {e1, . . . , en, f1, . . . , fn} be the standard basis for K2n. Equip K2n with the bilinear form:

〈ei, ej〉 = 〈fi, fj〉 = 0 for all i, j, 〈ei, fj〉 = −〈fj , ei〉 = δij .

(a) A symplectic lattice is a lattice L ⊂ K2n such that 〈·, ·〉 restricts to a perfect O-valued pairing on
L. Show that GrSp2n

can be identified with the set of symplectic lattices.

(b) Give a lattice-theoretic description of GrPSp2n
. (This affine Grassmannian has two connected

components, one of which can be identified with GrSp2n
. What does the other component consist

of?)

(c) Recall that Sp2 = SL2. How is this related to the description of GrSL2
from the lecture?

(d) Give analogous descriptions of the affine Grassmannians of SO2n+1 and SO2n.

Lecture 2

7. The following questions deal with the convolution space for GLn. It might be a good idea to start with
the special case where the coweights are minuscule.

(a) Let λ = (a1, . . . , an) and µ = (b1, . . . , bn) be two dominant coweights. Let m = b1 − bn. Show
that Grλ ×̃Grµ ⊂ Gr ×̃Gr can be identified with the set(L,L′)

∣∣∣ L ∈ Grλ, and
there is a sequence of lattices tb1L = L′0 ⊂ L′1 ⊂ · · · ⊂ L′m = L′

such that tL′i ⊂ L′i−1 and dimC L′i/L′i−1 = j, where bj > b1 − i ≥ bj+1.


Moreover, show that the image of m : Grλ ×̃Grµ → Gr is Grλ+µ.

(b) Let λ(1), . . . , λ(k) be a sequence of dominant coweights. Generalize the previous part to give a
description of Grλ(1) ×̃ · · · ×̃Grλ(k) .

In fact, upon further reflection, I think you should start with the following problem:

(c) Let λ = (a1, . . . , an), and let m = a1−an. Define integers km−1, km−2, . . . , k1, k0 by the condition
that aki ≥ a1 − i > aki+1. Show that

m : Gr(an,...,an) ×̃Gr$km−1
×̃ · · · ×̃Gr$k0 → Grλ

is a resolution of singularities.

8. Determine the fibers of the following convolution morphisms for GL2:

(a) m : Gr(1,0) ×̃Gr(1,0) → Gr(2,0). (Answer: For x ∈ Gr(2,0), the fiber is a point. For x ∈ Gr(1,1), the
fiber is isomorphic to P1.)

(b) m : Gr(1,0) ×̃ Gr(1,0) ×̃ Gr(1,0) → Gr(3,0). (Answer: For x ∈ Gr(3,0), the fiber is a point. For
x ∈ Gr(2,1), the fiber looks like two copies of P1 meeting at a point.)

(c) Carry out the same computation for some other weights of your own choosing. If you are feeling
adventurous, go up to GL3.

9. Let Φ+ be the set of positive roots, and let ρ = 1
2

∑
α∈Φ+ α. The q-analogue of the Kostant partition

function is the family of polynomials Pν(q) (where ν ∈ X∗ and q is an indeterminate) given by the
generating function ∏

α∈Φ+

1

1− qeα
=
∑
ν∈X∗

Pν(q)eν .
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For λ ∈ X+
∗ and µ ∈ X∗, the q-analogue of the weight multiplicity is the polynomial Mµ

λ (q) given by

Mµ
λ (q) =

∑
w∈W

(−1)`(w)Pw(λ+ρ)−(µ+ρ)(q).

Recall from the lecture that Lusztig proved that when λ and µ are both dominant, we have

Mµ
λ (q) =

∑
i≥0

rankH− dim Grµ−i(ICλ|Grµ)qi/2.

Compute Pν(q) and Mµ
λ (q) in general for SL2. Check that Mµ

λ (1) is always the dimension of the
µ-weight space of L(λ) (even if µ is not dominant!). Check that when µ is dominant, Mµ

λ (q) has
nonnegative coefficients.

Here are the answers: identifying X∗ with Z, we have

Pν(q) =

{
qν/2 if ν ∈ 2Z≥0,

0 otherwise,

and

Mµ
λ (q) =


0 if µ > λ or λ 6≡ µ (mod 2),

q(λ−µ)/2 if −λ ≤ µ ≤ λ and λ ≡ µ (mod 2),

q(λ−µ)/2 − q(−λ−µ−2)/2 if µ ≤ −λ− 2 and λ ≡ µ (mod 2).

10. (This question requires some familiarity with calculating with perverse sheaves.) Use Problem 8 to
compute IC(1,0) ? IC(1,0) and IC(1,0) ? IC(1,0) ? IC(1,0). Use these calculations to determine the stalks
of IC(2,0) and IC(3,0). Check that these agree with the q-analogue of the weight multiplicity that you
computed in the previous question.

11. In the affine Grassmannian of GL3, determine the space S(0,0,0) ∩Gr(1,0,−1). This variety should have
two irreducible components, each of dimension 2. The two components provide a basis for the zero
weight space of the adjoint representation of GL3.

(Hint: One could equivalently work in S(1,1,1) ∩ Gr(2,1,0). For the latter, it might be helpful to start

by looking at the open subset M ⊂ Gr(3,0,0) from Problem 4. Then this MV cycle calculation turns
into a problem about 3× 3 nilpotent matrices.)

Lecture 3

12. Let B̌ be the Borel subgroup of Ǧ corresponding to the negative roots, and let ǔ be the Lie algebra of
its unipotent radical. It follows from results of Brylinski that for λ ∈ X+

∗ and µ ∈ X∗, we have

Mµ
λ (q) =

∑
n≥0

∑
i≥0

(−1)i dim ExtiB̌(L(λ),Symn(ǔ∗)⊗ Cµ)

 qn.

Prove this directly for Ǧ = SL2. (Hint: For this group, nonzero Ext-groups can occur only for i = 0, 1.
If µ is dominant, then only i = 0 can occur.)

13. The first part of this question requires some familiarity with perverse sheaves. However, you can treat
the first part as a “black box” and then work out the second part.

(a) Let G = PGL2, and let λ, µ ∈ X∗. Assume that I · tµ ⊂ I · tλ. Prove that IC(I · tλ)|I·µ is
isomorphic to the shifted constant sheaf C[dim I · tλ]. (Hint: First treat the case where λ is
dominant, using the the calculation of Mµ

λ (q) from Problem 9. Then, if λ is not dominant, show
that I · tλ is isomorphic to the closure of a dominant I-orbit on the other connected component
of GrPGL2

.)

(b) Use the result of the previous part to compute the characters of simple modules in the principal
block of the quantum group Uq(sl2) specialized at a root of unity.
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