Exercises on the affine Grassmannian

Pramod N. Achar

Lecture 1

1. Let R be a commutative ring.
(a) Show that $f \in R[[t]]$ is invertible if and only if its constant term is invertible in R.
(b) Let $f \in R((t))$, say $f=a_{k} t^{k}+a_{k+1} t^{k+1}+\cdots$. Show that f is invertible if and only if there is an integer m such that $a_{k}, a_{k+1}, \ldots, a_{m}$ are nilpotent, and a_{m+1} is invertible. In particular, if R is a field, then $R((t))$ is a field.
(c) Show that as an ind-variety, $\operatorname{Gr}_{\mathbb{G}_{\mathrm{m}}} \cong \mathbb{Z}$ (i.e., a discrete countable set). On the other hand, use the previous part to show that $\mathrm{Gr}_{\mathbb{G}_{\mathrm{m}}}$ is not a reduced ind-scheme (i.e., not a direct limit of reduced schemes).
2. Prove that every lattice in \mathbf{K}^{n} is in the $\mathrm{GL}_{n}(\mathbf{O})$-orbit of a lattice with basis of the form

$$
\left\{t^{a_{1}} \mathbf{e}_{1}, t^{a_{2}} \mathbf{e}_{2}, \ldots, t^{a_{n}} \mathbf{e}_{n}\right\}
$$

with $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$. Moreover, the n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is uniquely determined. We therefore obtain a bijection

$$
\left\{\mathrm{GL}_{n}(\mathbf{O}) \text {-orbits on } \mathrm{Gr}_{\mathrm{GL}_{n}}\right\} \stackrel{\sim}{\longleftrightarrow}\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}^{n} \mid a_{1} \geq a_{2} \geq \cdots a_{n}\right\}
$$

3. (a) Let $0 \leq k<n$, and consider the following dominant coweight for GL_{n} :

$$
\varpi_{k}=(\underbrace{1, \ldots, 1}_{k}, \underbrace{0, \ldots, 0}_{n-k}) .
$$

(These are called minuscule weights.) Show that $\mathrm{Gr}_{\varpi_{k}}$ is a closed $\mathrm{GL}_{n}(\mathbf{O})$-orbit in Gr , and that it is isomorphic to the (ordinary) Grassmannian of $(n-k)$-dimensional subspaces of \mathbb{C}^{n}.
(b) Let $\lambda=\left(a_{1}, \ldots, a_{n}\right)$ be a dominant coweight for GL $_{n}$ (so that $a_{1} \geq \cdots \geq a_{n}$.) Let $m=a_{1}-a_{n}$. Show that

$$
\overline{\operatorname{Gr}_{\lambda}}=\left\{\begin{array}{l|l}
\mathcal{L} \in \mathrm{Gr} & \begin{array}{c}
\text { there is a sequence of lattices } t^{a_{1}} \mathcal{L}^{\circ}=\mathcal{L}_{0} \subset \mathcal{L}_{1} \subset \cdots \subset \mathcal{L}_{m}=\mathcal{L} \\
\text { such that } t \mathcal{L}_{i} \subset \mathcal{L}_{i-1} \text { and } \operatorname{dim}_{\mathbb{C}} \mathcal{L}_{i} / \mathcal{L}_{i-1}=j, \text { where } a_{j}>a_{1}-i \geq a_{j+1}
\end{array}
\end{array}\right\}
$$

Moreover, Gr_{λ} is the open subset of $\overline{\mathrm{Gr}_{\lambda}}$ in which $\mathcal{L}_{i}=t^{-1} \mathcal{L}_{i-1} \cap \mathcal{L}$.
If this is too difficult, start with this warm-up problem: Assuming that the description above is correct, show that every lattice in $\overline{\mathrm{Gr}_{\lambda}}$ has valuation $a_{1}+\cdots+a_{n}$. Then do Problem 7 a in the special case of minuscule coweights, then Problem 7c, then come back to this problem.
4. (Lusztig 1981) Consider the weight $\lambda=(n, 0, \ldots, 0)$ for GL_{n}. Let \mathcal{M} be the open subset of $\overline{\operatorname{Gr}_{\lambda}}$ consisting of lattices \mathcal{L} such that $\mathcal{L} \cap\left(t^{-1} \mathbb{C}\left[t^{-1}\right]\right)^{n}=0$. (In other words, \mathcal{L} contains no vector whose coordinates involve only strictly negative powers of t.) Show that \mathcal{M} is isomorphic to the affine variety \mathcal{N} of $n \times n$ nilpotent matrices.
(Hint: Let $\mathcal{L} \in \mathcal{M}$ and let $v \in \mathcal{L}$. Write v as $\sum_{j>-n} v_{j} t^{j}$, where $v_{j} \in \mathbb{C}^{n}$. The assumption that $\mathcal{L} \cap\left(t^{-1} \mathbb{C}\left[t^{-1}\right]\right)^{n}=0$ implies that $v_{-n+1}, v_{-n+2}, \ldots, v_{-1}$ are determined by v_{0}. In fact, there is a linear $\operatorname{map} x: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ such that $v_{-k}=x^{k} v_{0}$, and $x^{n}=0$. The assignment $\mathcal{L} \mapsto x$ gives the desired map $\mathcal{M} \rightarrow \mathcal{N}$.
5. Two lattices \mathcal{L} and \mathcal{L}^{\prime} in \mathbf{K}^{n} are said to be homothetic if there is a nonzero scalar $s \in \mathbf{K}^{\times}$such that $\mathcal{L}=s \mathcal{L}^{\prime}$. Show that $\mathrm{Gr}_{\mathrm{PGL}_{n}}$ can be identified with the set of homothety classes of lattices.
6. Let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}, \mathbf{f}_{1}, \ldots, \mathbf{f}_{n}\right\}$ be the standard basis for $\mathbf{K}^{2 n}$. Equip $\mathbf{K}^{2 n}$ with the bilinear form:

$$
\left\langle\mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle=\left\langle\mathbf{f}_{i}, \mathbf{f}_{j}\right\rangle=0 \text { for all } i, j, \quad\left\langle\mathbf{e}_{i}, \mathbf{f}_{j}\right\rangle=-\left\langle\mathbf{f}_{j}, \mathbf{e}_{i}\right\rangle=\delta_{i j} .
$$

(a) A symplectic lattice is a lattice $\mathcal{L} \subset \mathbf{K}^{2 n}$ such that $\langle\cdot, \cdot\rangle$ restricts to a perfect \mathbf{O}-valued pairing on \mathcal{L}. Show that $\mathrm{Gr}_{\mathrm{Sp}_{2 n}}$ can be identified with the set of symplectic lattices.
(b) Give a lattice-theoretic description of $\mathrm{Gr}_{\mathrm{PSp}_{2 n}}$. (This affine Grassmannian has two connected components, one of which can be identified with $\mathrm{Gr}_{\mathrm{Sp}_{2 n}}$. What does the other component consist of?)
(c) Recall that $\mathrm{Sp}_{2}=\mathrm{SL}_{2}$. How is this related to the description of $\mathrm{Gr}_{\mathrm{SL}_{2}}$ from the lecture?
(d) Give analogous descriptions of the affine Grassmannians of $\mathrm{SO}_{2 n+1}$ and $\mathrm{SO}_{2 n}$.

Lecture 2

7. The following questions deal with the convolution space for GL_{n}. It might be a good idea to start with the special case where the coweights are minuscule.
(a) Let $\lambda=\left(a_{1}, \ldots, a_{n}\right)$ and $\mu=\left(b_{1}, \ldots, b_{n}\right)$ be two dominant coweights. Let $m=b_{1}-b_{n}$. Show that $\overline{\mathrm{Gr}_{\lambda}} \widetilde{\times} \overline{\mathrm{Gr}_{\mu}} \subset \mathrm{Gr} \widetilde{\times} \mathrm{Gr}$ can be identified with the set

$$
\left\{\left(\mathcal{L}, \mathcal{L}^{\prime}\right) \left\lvert\, \begin{array}{c}
\mathcal{L} \in \overline{\mathrm{Gr}_{\lambda}}, \text { and } \\
\\
\text { there is a sequence of lattices } t_{1}^{b_{1}} \mathcal{L}=\mathcal{L}_{0}^{\prime} \subset \mathcal{L}_{1}^{\prime} \subset \cdots \subset \mathcal{L}_{m}^{\prime}=\mathcal{L}^{\prime} \\
\text { such that } t \mathcal{L}_{i}^{\prime} \subset \mathcal{L}_{i-1}^{\prime} \text { and } \operatorname{dim}_{\mathbb{C}} \mathcal{L}_{i}^{\prime} / \mathcal{L}_{i-1}^{\prime}=j, \text { where } b_{j}>b_{1}-i \geq b_{j+1}
\end{array}\right.\right\}
$$

Moreover, show that the image of $m: \overline{\mathrm{Gr}_{\lambda}} \widetilde{\times} \overline{\mathrm{Gr}_{\mu}} \rightarrow \mathrm{Gr}$ is $\overline{\mathrm{Gr}_{\lambda+\mu}}$.
(b) Let $\lambda^{(1)}, \ldots, \lambda^{(k)}$ be a sequence of dominant coweights. Generalize the previous part to give a description of $\overline{\mathrm{Gr}_{\lambda^{(1)}}} \widetilde{\times} \cdots \widetilde{\times} \overline{\mathrm{Gr}_{\lambda^{(k)}}}$.

In fact, upon further reflection, I think you should start with the following problem:
(c) Let $\lambda=\left(a_{1}, \ldots, a_{n}\right)$, and let $m=a_{1}-a_{n}$. Define integers $k_{m-1}, k_{m-2}, \ldots, k_{1}, k_{0}$ by the condition that $a_{k_{i}} \geq a_{1}-i>a_{k_{i}+1}$. Show that

$$
m: \operatorname{Gr}_{\left(a_{n}, \ldots, a_{n}\right)} \widetilde{\times} \operatorname{Gr}_{\varpi_{k_{m-1}}} \widetilde{\times} \cdots \widetilde{\times} \operatorname{Gr}_{\varpi_{k_{0}}} \rightarrow \overline{\operatorname{Gr}_{\lambda}}
$$

is a resolution of singularities.
8. Determine the fibers of the following convolution morphisms for GL_{2} :
(a) $m: \operatorname{Gr}_{(1,0)} \widetilde{\times} \operatorname{Gr}_{(1,0)} \rightarrow \overline{\operatorname{Gr}_{(2,0)}}$. (Answer: For $x \in \operatorname{Gr}_{(2,0)}$, the fiber is a point. For $x \in \operatorname{Gr}_{(1,1)}$, the fiber is isomorphic to \mathbb{P}^{1}.)
(b) $m: \operatorname{Gr}_{(1,0)} \widetilde{\times} \operatorname{Gr}_{(1,0)} \widetilde{\times} \operatorname{Gr}_{(1,0)} \rightarrow \overline{\operatorname{Gr}_{(3,0)}}$. (Answer: For $x \in \operatorname{Gr}_{(3,0)}$, the fiber is a point. For $x \in \mathrm{Gr}_{(2,1)}$, the fiber looks like two copies of \mathbb{P}^{1} meeting at a point.)
(c) Carry out the same computation for some other weights of your own choosing. If you are feeling adventurous, go up to GL_{3}.
9. Let Φ^{+}be the set of positive roots, and let $\rho=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha$. The q-analogue of the Kostant partition function is the family of polynomials $P_{\nu}(q)$ (where $\nu \in \mathbf{X}_{*}$ and q is an indeterminate) given by the generating function

$$
\prod_{\alpha \in \Phi^{+}} \frac{1}{1-q e^{\alpha}}=\sum_{\nu \in \mathbf{X}_{*}} P_{\nu}(q) e^{\nu}
$$

For $\lambda \in \mathbf{X}_{*}^{+}$and $\mu \in \mathbf{X}_{*}$, the q-analogue of the weight multiplicity is the polynomial $M_{\lambda}^{\mu}(q)$ given by

$$
M_{\lambda}^{\mu}(q)=\sum_{w \in W}(-1)^{\ell(w)} P_{w(\lambda+\rho)-(\mu+\rho)}(q)
$$

Recall from the lecture that Lusztig proved that when λ and μ are both dominant, we have

$$
M_{\lambda}^{\mu}(q)=\sum_{i \geq 0} \operatorname{rank} \mathcal{H}^{-\operatorname{dim} \operatorname{Gr}_{\mu}-i}\left(\left.\mathrm{IC}_{\lambda}\right|_{\operatorname{Gr}_{\mu}}\right) q^{i / 2}
$$

Compute $P_{\nu}(q)$ and $M_{\lambda}^{\mu}(q)$ in general for $S L_{2}$. Check that $M_{\lambda}^{\mu}(1)$ is always the dimension of the μ-weight space of $L(\lambda)$ (even if μ is not dominant!). Check that when μ is dominant, $M_{\lambda}^{\mu}(q)$ has nonnegative coefficients.
Here are the answers: identifying \mathbf{X}_{*} with \mathbb{Z}, we have

$$
P_{\nu}(q)= \begin{cases}q^{\nu / 2} & \text { if } \nu \in 2 \mathbb{Z}_{\geq 0} \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
M_{\lambda}^{\mu}(q)= \begin{cases}0 & \text { if } \mu>\lambda \text { or } \lambda \not \equiv \mu \quad(\bmod 2) \\ q^{(\lambda-\mu) / 2} & \text { if }-\lambda \leq \mu \leq \lambda \text { and } \lambda \equiv \mu \quad(\bmod 2) \\ q^{(\lambda-\mu) / 2}-q^{(-\lambda-\mu-2) / 2} & \text { if } \mu \leq-\lambda-2 \text { and } \lambda \equiv \mu \quad(\bmod 2)\end{cases}
$$

10. (This question requires some familiarity with calculating with perverse sheaves.) Use Problem 8 to compute $\mathrm{IC}_{(1,0)} \star \mathrm{IC}_{(1,0)}$ and $\mathrm{IC}_{(1,0)} \star \mathrm{IC}_{(1,0)} \star \mathrm{IC}_{(1,0)}$. Use these calculations to determine the stalks of $\mathrm{IC}_{(2,0)}$ and $\mathrm{IC}_{(3,0)}$. Check that these agree with the q-analogue of the weight multiplicity that you computed in the previous question.
11. In the affine Grassmannian of GL_{3}, determine the space $S_{(0,0,0)} \cap \overline{\operatorname{Gr}_{(1,0,-1)}}$. This variety should have two irreducible components, each of dimension 2. The two components provide a basis for the zero weight space of the adjoint representation of GL_{3}.
(Hint: One could equivalently work in $S_{(1,1,1)} \cap \overline{\operatorname{Gr}_{(2,1,0)}}$. For the latter, it might be helpful to start by looking at the open subset $\mathcal{M} \subset \overline{\mathrm{Gr}_{(3,0,0)}}$ from Problem 4. Then this MV cycle calculation turns into a problem about 3×3 nilpotent matrices.)

Lecture 3

12. Let \check{B} be the Borel subgroup of \check{G} corresponding to the negative roots, and let $\check{\mathfrak{u}}$ be the Lie algebra of its unipotent radical. It follows from results of Brylinski that for $\lambda \in \mathbf{X}_{*}^{+}$and $\mu \in \mathbf{X}_{*}$, we have

$$
M_{\lambda}^{\mu}(q)=\sum_{n \geq 0}\left(\sum_{i \geq 0}(-1)^{i} \operatorname{dim} \operatorname{Ext}_{\check{B}}^{i}\left(L(\lambda), \operatorname{Sym}^{n}\left(\check{\mathfrak{u}}^{*}\right) \otimes \mathbb{C}_{\mu}\right)\right) q^{n}
$$

Prove this directly for $\check{G}=\mathrm{SL}_{2}$. (Hint: For this group, nonzero Ext-groups can occur only for $i=0,1$. If μ is dominant, then only $i=0$ can occur.)
13. The first part of this question requires some familiarity with perverse sheaves. However, you can treat the first part as a "black box" and then work out the second part.
(a) Let $G=\mathrm{PGL}_{2}$, and let $\lambda, \mu \in \mathbf{X}_{*}$. Assume that $I \cdot \mathbf{t}_{\mu} \subset \overline{I \cdot \mathbf{t}_{\lambda}}$. Prove that $\left.\operatorname{IC}\left(\overline{I \cdot \mathbf{t}_{\lambda}}\right)\right|_{I \cdot \mu}$ is isomorphic to the shifted constant sheaf $\mathbb{C}\left[\operatorname{dim} I \cdot \mathbf{t}_{\lambda}\right]$. (Hint: First treat the case where λ is dominant, using the the calculation of $M_{\lambda}^{\mu}(q)$ from Problem 9. Then, if λ is not dominant, show that $\overline{I \cdot \mathbf{t}_{\lambda}}$ is isomorphic to the closure of a dominant I-orbit on the other connected component of $\mathrm{Gr}_{\mathrm{PGL}_{2}}$.)
(b) Use the result of the previous part to compute the characters of simple modules in the principal block of the quantum group $U_{q}\left(\mathfrak{s l}_{2}\right)$ specialized at a root of unity.

