DAY 2 EXERCISES

1. QUANTIZATION OF ALGEBRAS

Exercise 1.1. Show that the bracket on \(gr \mathcal{A} \) is well-defined and is a Poisson bracket.

Exercise 1.2. Show that the product in \(\mathcal{A} / / _{\lambda} \mathcal{G} \) is well-defined.

Remark: You have to show both that the product is well-defined, and that \(\mathcal{A} / / _{\lambda} \mathcal{G} \) is closed under the product!

2. QUANTIZATION OF SHEAVES

Exercise 2.1 (Exercise 2.1 in the notes). Let \(\mathcal{A} \) be a (complete and separated) quantization of \(\mathcal{A} \). Show that if \(\mathcal{A} \) is Noetherian so is \(\mathcal{A} \).

Hint: Let \(\mathcal{I} \) be a left ideal of \(\mathcal{A} \). Pick homogeneous generators \(\overline{a}_1, \ldots, \overline{a}_n \) of \(gr \mathcal{I} \), and pick lifts \(a_1, \ldots, a_n \in \mathcal{I} \). Show that \(a_1, \ldots, a_n \) are generators of \(\mathcal{I} \).

Exercise 2.2. Let \(\mathcal{A} \) be a filtered algebra, complete and separated. Assume that \(gr \mathcal{A} \) is Noetherian. Then any left ideal of \(\mathcal{A} \) is closed.

Hint: Use descending induction on degrees.

Exercise 2.3. Let \(G \) be a reductive group acting on a vector space \(R \). Lift this action to an action on \(T^* R \). Consider the action of \(\mathbb{C}^\times \) on \(T^* R \) given by \(t.(u,u^*) = (u,t^{-1}u^*) \), and take a character \(\theta : G \to \mathbb{C}^\times \). Let \(f \in \mathbb{C}[T^* R]^{G,\theta} \). Show that every homogeneous component of \(f \) (w.r.t. the grading on \(\mathbb{C}[T^* R] \) induced by the \(\mathbb{C}^\times \)-action) is again in \(\mathbb{C}[T^* R]^{G,\theta} \).

Hint: The actions of \(\mathbb{C}^\times \) and \(G \) commute.

Exercise 2.4. Consider a reductive group \(G \) acting on a vector space \(R \). Show that a quantum comoment map for the action of \(G \) on \(D(R) \) is \(\xi \mapsto \xi_R \).