DAY 2 EXERCISES

1. QUANTIZATION OF ALGEBRAS

Exercise 1.1. Show that the bracket on $\text{gr} \mathcal{A}$ is well-defined and is a Poisson bracket.

Exercise 1.2. Show that the product in \mathcal{A}/\mathcal{G} is well-defined.

2. QUANTIZATION OF SHEAVES

Exercise 2.1 (Exercise 2.1 in the notes). Let \mathcal{A} be a (complete and separated) quantization of \mathcal{A}. Show that if \mathcal{A} is Noetherian so is \mathcal{A}.

Exercise 2.2. Let \mathcal{A} be a filtered algebra, complete and separated. Assume that $\text{gr} \mathcal{A}$ is Noetherian. Then any left ideal of \mathcal{A} is closed.

Exercise 2.3. Let G be a reductive group acting on a vector space R. Lift this action to an action on T^*R. Consider the action of \mathbb{C}^\times on T^*R given by $t.(u,u^*) = (u,t^{-1}u^*)$, and take a character $\theta : G \to \mathbb{C}^\times$. Let $f \in \mathbb{C}[T^*R]^G_{\lambda \theta}$. Show that every homogeneous component of f (w.r.t. the grading on $\mathbb{C}[T^*R]$ induced by the \mathbb{C}^\times-action) is again in $\mathbb{C}[T^*R]^G_{\lambda \theta}$.

Exercise 2.4. Consider a reductive group G acting on a vector space R. Show that a quantum comoment map for the action of G on $D(R)$ is $\xi \mapsto \xi_R$.