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A novel one-pot fluorination and asymmetric Michael addition

reaction sequence promoted by recyclable fluorous bifunctional

cinchona alkaloid–thiourea organocatalysts is introduced for the

synthesis of a-fluoro-b-ketoesters bearing two chiral centers.

Asymmetric fluorination is an active topic in medicinal and
agricultural chemistry.1,2 Generation of a-fluorinated carbonyl
compounds with two adjacent stereogenic centers is highly
demanded in the synthesis of biologically active molecules such
as histone deacetylase inhibitor I,3 progestational and antiin-
flammatory agent II,4 antiobesity and anticoronary agent III,5

antimalarial candidate IV,6 acaricide and insecticide V,7 and plant
growth regulatory activator VI (Fig. 1).8 Synthesis of a fluorinated
quaternary stereocenter next to a tertiary stereocenter can be
accomplished by organocatalytic Michael addition of a-fluorinated
b-ketoesters with Michael acceptors such as nitroalkenes, chal-
cones, a,b-unsaturated aldehydes, and N-alkyl maleimides.
Pyrrolidine derivatives,9 guanidines,10 cinchona alkaloids,11

bifunctional cinchona alkaloid–thioureas,12 and bifunctional
amine–thioureas13 have been developed as organocatalysts for
such a transformation.

As part of our continuous effort on the development of
recyclable fluorous organocatalyts14 for asymmetric synthesis,15 we
recently developed one-pot fluorination and Michael addition
reactions.16 We also reported asymmetric fluorination reactions
promoted by fluorous cinchona alkaloid ester.17 Introduced in this
paper is a step economic one-pot fluorination and asymmetric
Michael addition sequence promoted by recyclable fluorous
catalysts. To the best of our knowledge, no such a one-pot
transformation has been reported in literature for asymmetric
synthesis.

Catalysts used to explore the one-pot fluorination and Michael
addition reactions are shown in Fig. 2 which include cinchona

alkaloids c-1 to c-4,18 bifunctional cinchona alkaloid-thioureas c-5
to c-7,19 pyrrolidine derivative c-8, and bifunctional amine-thiourea
c-9.14b Among them, five are fluorous bearing a perfluorinated
alkyl chain such as C6F13 or C8F17. Selectfluor

TM

(F-TEDA-BF4) was
used as a fluorine source and an equimolar amount of b-ketoester
1a and nitroalkene 2a were used for the one-pot synthesis. Under
the reaction condition of using 20 mol% of catalyst at 0 uC for 48
h, all the reactions generated target product 3a except with
catalysts c-9 (Table 1, entries 1–9). The reaction with bifunctional
cinchona alkaloid-thiourea catalysts c-5, c-6 and c-7 gave product
in high yield (93–96%), good diastereoselectivity (5 : 1 to 6 : 1 dr),
and enantioselectivity (80–82% ee). These results obtained from
our one-pot reactions are similar to those from the Michael
additions of a-fluorinated b-ketoesters reported in literature.12b

Bifunctional pyrrolidine-thiourea catalyst c-9 has the best diaster-
eoselectivity (10 : 1 dr) but low yield and enantioselectivity. Since
fluorous catalysts c-5 and c-6 are epimers, only c-5 was used for
further investigation. It was found that the reaction carried out
under 220 uC for 48 h using 1 : 1 MeCN–MePh as a solvent was
the best condition which gave product 3a in 95% ee and 9 : 1 dr.
The configuration of 3a was determined by comparing the chiral
HPLC analytical data with the literature data.12b

Electrophilic fluorination of 1a could occur without a catalyst to
afford racemic a-fluoro-b-ketoester 4a.16 Resulting compound 4a
bearing a more acidic a-proton facilitated the Michael addition to
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characterization data. See DOI: 10.1039/c3ra42501k Fig. 1 Biologically interested a-fluorinated carbonyl compounds.
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generate product 3a with two stereogenic centers. To confirm the
mechanism of the cascade reaction, the reaction of 1a and 2a
under the optimized condition was monitored by LC-MS analysis.
Analytical results of the reaction mixtures at different reaction
time are shown in Fig. 3. The amount of racemic fluorinated
compound 4a was produced up to 30% in the first 6 h and then
slowly decreased. The amount of product 3a was steadily increased
during the reaction process. Only a small amount of Michael
addition product 5a was detected in the reaction mixture. This

experiment indicates that the facile fluorination occurred first to
form racemic a-flourinated ketoester 4a followed by c-5 catalyzed
asymmetric Michael addition to form 3a.

It was found that recyclable fluorous catalysts c-5 and c-6
performed as well as their non-fluorous counterpart c-7. Catalyst c-
5 was easily isolated from the reaction mixture by fluorous solid-
phase extraction (F-SPE) with 80 : 20 MeOH/H2O and then MeOH
on a FluoroFlash1 cartridge.20 The catalyst was recovered from
the MeOH fraction in 93% yield and 98% purity. The reused
catalyst has no significant change of product yield and selectivity
(Scheme 1).

To explore the scope of catalyst c-5, a series of b-ketoesters 1
were reacted with Michael acceptors 2 such as nitroalkenes,
chalcones, and a,b-unsaturated ketones/esters (Table 2). Reactions
of ethyl benzoylacetates with nitrostyrenes gave excellent product
yield and good to excellent enantioselectivity (entries 1–6). The
substituents on the aromatic rings of b-ketoesters and nitrostyr-
enes gave the products with decreased diastereoselectivity. The
reaction of methyl ketone afforded product 3g in good yield but
decreased enantio- and diastereoselectivities (entry 7). Furyl
nitroalkene produced product 3h in 96% yield with moderate
enantio- and diastereoselectivities (62% ee and 3 : 1 dr). As a less
reactive Michael acceptor, the reaction of chalcone and its
derivatives were conducted using increased amounts of catalyst
in the presence of CsCO3. Even though the product yield and
selectivity were still low (entries 10–11). Dibenzylideneacetone with
two Michael acceptor sites gave the single Michael addition
product 3l in 8% ee (entry 12). We concluded that nitroalkenes
constitute the best electrophiles to obtain high enantioselective
Michael additions.

Table 1 Catalyst screening for one-pot fluorination and Michael additiona

Cat. Temp (uC) Time (h) Yield (%)b ee (%)c drd

1 c-1 0 48 80 258 3 : 1
2 c-2 0 48 36 42 3 : 1
3 c-3 0 48 31 46 4 : 1
4 c-4 0 48 86 271 3 : 1
5 c-5 0 48 96 81 6 : 1
6 c-6 0 48 95 280 6 : 1
7 c-7 0 48 93 282 5 : 1
8 c-8 0 72 50 25 10 : 1
9 c-9 0 72 — — —
10e c-5 25 24 71 36 1 : 1
11f c-5 25 24 67 41 1 : 1
12g c-5 25 24 94 58 2 : 1
13 c-5 25 24 97 66 2 : 1
14 c-5 210 36 95 90 6 : 1
15 c-5 220 48 92 95 9 : 1

a Reaction conditions: 0.1 mmol 1a, 0.1 mmol Selectfluor
TM

, 0.1
mmol 2a, 20 mol% catalyst in 1 : 1 CH3CN–MePh. b Isolated yield.
c Determined by chiral HPLC. d Determined by 1H NMR. e CH3CN as
solvent. f MePh as solvent. g CH3CN/CF3Ph as solvent.

Fig. 3 Compound distribution of c-5 catalyzed one-pot reaction.

Scheme 1 Catalyst recycling for the one-pot reaction.

Fig. 2 Organocatalysts tested for one-pot reaction.
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Maleimides are reactive Michael acceptors.21 One-pot reaction
by mixing all the reaction components together afforded a low
yield of expected product because of the competition of the direct
Michael addition and the fluorination. A one-pot but two-step
procedure was developed to address this issue. The Michael donor
was first fluorinated with Selectfluor

TM

before the addition of the
maleimide. Maleimides with different N-alkylation groups reacted
with b-ketoester generated products in excellent yields (89–98%)
with good ee (77–94%) and dr (.20 : 1) (Table 3). The
diastereoselectivity is significantly improved compared to that
shown in Table 2.

The synthesis of fluorous version bifunctional cinchona
alkaloid–thioureas organocatalyst c-5 was accomplished following
the reported procedures (Scheme 2).19b Hydroquinidine c-1 was
converted to azide 6 by reacting with diphenyl phosphorazidate
(DPPA) in the present of triphenyl phosphine (TPP) and
diisopropyl azodicarboxylate (DIAD). The reaction of azide 6 with
TPP and CS2 afforded 7 which was then reacted with 4-perfluor-
ooctylaniline under microwave heating to afford c-5 in 27% overall
yield after F-SPE purification.

In summary, the fluorous bifunctional cinchona alkaloid–
thiourea organocatalyst c-5 and its epimer c-6 have been
successfully employed in the one-pot fluorination and enantiose-
lective Michael addition reactions for the synthesis of a-fluoro-
b-ketoesters containing two stereogenic centers. The new bifunc-
tional cinchona alkaloid-thiourea organocatalysts22,23 can be
readily applied to other asymmetric transformations such as
Henry,24 Friedel–Crafts,25 Diels–Alder,26 and Morita–Baylis–
Hillman reactions.27
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(2011ZDJH07), Jiangsu Provincial Natural Science Foundation of
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