Wednesday EXAM-2, Nov 18
 Magnetoelectronics
 Optoelectronics Digital Electronics
 Pulsed ICs

Due Wed, Nov 18

Homework Ch. 21
Lab-8a and 8 b in one report

Review Digital Circuits

\square Inside Computers
Very large-scale integration (VLSI)
CPU, central processing unit $>10^{9}$ transistors (Minecraft computer)
\square Truth Table
Output for each miniterm (=1)
\square Karnaugh Map (simplification $\rightarrow \rightarrow \rightarrow$)
graphical matrix solution
combine groups of miniterms (yellow)
wrap around sides to combine (blue)
use miniterm more than once (orange)

Karnaugh Map Rules

RULE-1: Order top/side table axes, vary only one bit when moving to next cell

RULE-2: group even numbers of " 1 "s that are adjacent
(You can wrap around the cylinder, as in $A B=10 \rightarrow C D=00$)

RULE-3: Each group is one miniterm
RULE-4: If input is both " 0 " and " 1 " you don't need that input

K-map Simplification	Truth Table				
	AB	00	01	11	10
	CD				
	00	1	0	0	1
\rightarrow	01	0	0	1	1
	11	0	0	0	1
	10	0	0	0	0

5 \& 6-variable K-map

Calendar of Topics Covered
Physics PHYS 2371/2372, Electronics for Scientists
Don Heiman and Hari Kumarakuru
Northeastern University, Fall 2020

Also see Course Description and Syllabus

This is a schedule of the topics covered, but it may be modified occasionally (11/07/2020).

Week \#	Lectures	Weekly Topics (Chs.)	Homework (Ch-Problem)	Lab Experiments (always look for latest version)
$\begin{gathered} \text { VII } \\ \text { Oct 19, 21-23 } \\ \text { MON/WED } \end{gathered}$	MONDAY EXAM-I	Wed Lecture Magnetoelectronics Magnetoelectronics Lecture Magnetic induction/flux Transformers (Ch-11)	11-all	Lab-6, Build a Magnetometer Lab-6 video, Lab-6 data
$\begin{gathered} \text { VIII } \\ \text { Oct 28-30 } \end{gathered}$	Wed Lecture Optoelectronics Optoele Lecture	Photodiode, LED, laser	none	Lab-7, Optoelectronics (coupled LED-photodiode) Lab-7 Optoele video
IX Nov 2, 4-6 MON/WED	MON Digital-1 Digital-1 video WED Digital-2 Digital-2 Lecture	Mon/Wed Lectures Digital Logic (Ch-19,22), Binary Numbers (Ch-54) Logical Networks (Ch-20)	19-all, 20-all	Lab-8a, Digital Circuits (truth table, 4-bit decoder) Lab-8a Digital video Lab-8a video
X Nov 11-13	Monday Lecture Pulsed ICs Pulsed Lecture	Lecture: Pulsed ICs Digital Summary	21-1/2	Lab-8b, Pulsed Digital (Flip-flops, counter, displays) Lab-8b Pulsed video
XI Nov 18-20 WED EXAM	EXAM-II - Wed Final Project	EXAM-II: Magnetoelectronics, Optoelectronics, Digital/Pulsed		Final Project
$\begin{gathered} \text { XII } \\ \text { Nov 25-27 } \end{gathered}$	No Lecture	Thanksgiving		No Lab
$\begin{gathered} \text { XIII } \\ \text { Dec } 2 \end{gathered}$	Wed Lecture	Future Electronics		Project PowerPoint due Monday Dec 2 (EG361 or email file)
$\begin{gathered} \text { XIV } \\ \text { Dec 7-9 } \\ \hline \end{gathered}$	No Classes			

Pulsed Digital Circuits

- Moore's Law
- growth of technology
- Clock Speed
- Flip-flops
- RS flip-flop
- clocked FF
- JK flip-flop
- Lab-8b
- Digital Counter

Electronics - PHYS 2371/2

Keyboard \rightarrow Computer \rightarrow Monitor

What happens when you press a key on the keyboard?

Key press sends an
ASCII code to the computer.
ASCII Code is a number 0-255
Keyboard effectively sends:

- numbers for math
- characters for word processing
- special characters for functions

The computer central processing unit (CPU)
\rightarrow converts the ASCII code to binary numbers (e.g. 10110...)
\rightarrow uses machine code and assembly language
to process the information (add/multiply/spell check...)
The memory (ROM/RAM/NonVolatile) stores the information
The graphics card (GPU) converts the information for the monitor

The information from the graphics card (GPU) \rightarrow converts the information to pixels
to display on the LCD/LEDs in the monitor.

These numbers can be converted to text, symbols or images.

Electronics - PHYS 2371/2

ASCII Keyboard, Hexadecimal

Keyboard uses 8-bits bytes (two 4-bit numbers).
This requires Hexadecimal numbers.

Electronics - PHYS 2371/2

Moore's Law

The law is named after Intel co-founder Gordon E. Moore, who described the trend in his 1965 paper.

Moore's Law is the observation that, over the history of computing hardware, the number of transistors on integrated circuits doubles about every two years.

Exponential Increase with Time

- memory capacity (Moore to 1965)
- number of transistors, processing speed
- number and size of pixels in cameras

$$
\frac{\text { Moore's Law Got Me! }}{} \frac{\text { ** }}{(1: 42, \text { Mythbusters *) }}
$$

What is Moore's Law ${ }^{* *}(2: 25,2007)$
Moore's Law (11:51)

Moore's Law - Computing Power (speed/\$1,000)

(1) The accelerating pace of change...

2 ... and exponential growth in computing power...
Computer technology, shown here climbing dramatically by powers of 10 , is now progressing more each hour than it did in its entire first 90 years

COMPUTER RANKINGS
By calculations per second
By calculation
per $\$ 1,000$

Analytical engine Never fully built, Charles Babbage's invention was designed to solve designed to solve computational and

$$
\begin{aligned}
& \text { Colossus } \\
& \text { The electronic } \\
& \text { computer, with }
\end{aligned}
$$

computer, with

$$
1,500 \text { vacuum }
$$

UNIVAC I
The first commercially marketed computer, used to tabulate the U.S. Census, occupied $943 \mathrm{cu} . \mathrm{ft}$.

$$
\begin{aligned}
& 1,500 \text { vacuum } \\
& \text { tubes, helped the }
\end{aligned}
$$

$$
\begin{aligned}
& \text { tubes, helped the } \\
& \text { British crack German }
\end{aligned}
$$ Brish crack German codes during WW II

Power Mac G4 The first personal computer to deliver \longrightarrow I more than 1 billion floating.point operations per second

Electronics - PHYS 2371/2

Today - Pulsed Digital ICs

Electronic Clocks require pulsed ICs

- Digital Watches -

1 MHz crystal
divided down to 1 Hz

- All Computers need to synchronize gate operations (GHz)

Digital Pulsed ICs

- One-Shot, Oscillator, Ch-23
- 74121 one-shot
- 555 timer/oscillator
- Flip-Flops, Ch-21
- RS flip-flops
- D flip-flop (D latch)
- T flip-flop
- JK flip-flop (toggle)
- Registers and Counters, Ch-24
- binary counter

Computer Speed - Clock Rate, Architecture, Cores

1980
Intel 8088
4.77 MHz
\downarrow
2000
1 GHz
\downarrow
Now
$3+\mathrm{GHz}$

Clock tic
0.3 nsec 300 psec

Clock Speed

Also called clock rate, the speed at which a microprocessor executes instructions.

Every computer contains an internal clock that regulates the rate at which instructions are executed and synchronizes all the various computer components.

The CPU (central processing unit) requires a fixed number of clock ticks (or clock cycles) to execute each instruction.
The faster the clock, the more instructions the CPU can execute.
The internal architecture of a CPU also effects a CPU's performance, so two different CPUs with the same clock speed will not necessarily perform equally.

Whereas an Intel 80286 (16-bit) microprocessor requires 20 cycles to multiply two numbers, an Intel 80486 (32-bit) performs the same calculation in a single clock tick. 20 times faster!

Also, increasing the number of "cores" operating in parallel increases computation speed. (dual core, quad core, etc.)

Measuring Computer Performance - IPS and FLOPS

Instructions per Second (IPS)

Computer performance can be measured in IPS or MIPS (million IPS). Examples of integer operation include data movement (A to B) or value testing (If $A=B$, then C). MIPS as a performance benchmark is adequate when a computer is used in database queries, word processing, and spreadsheets (wiki).

> 2016 - Intel i7 CPU, 238,000 MIPS at 3.0 GHz
> > 200 billion instructions/second

FLOPS - better measure of performance

In computing, FLOPS (for FLoating-point Operations Per Second) is a measure of computer performance, useful in fields of scientific calculations that make heavy use of floating-point calculations. For such mathematical cases it is a more accurate measure than the generic IPS.

> 2017 - using 3 AMD commercial graphic cards $(\$ 2,500)$ achieved 75 TFLOPS ($\sim 10^{14}$ operations $\left./ \mathrm{sec}\right)$

Floating point number
e.g. 1.528535×10^{15}

20-40 IPS ~ 1 FLOPS

Supercomputer Architecture

2008 IBM Roadrunner > 1 PFLOPS

19,000 processors, 296 computer racks 2.4 MW power, \$100M

Pulsed ICs

```
We will now briefly cover the following pulsed ICs:
Multivibrators
- 74121 One-Shot
- 555 Timer/Oscillator
Flip-Flops
- RS Flip-Flop
- D Flip-Flop
- T Flip-Flop (toggle)
- JK Flip-Flop (universal)
```


74121 One-Shot

skip

Suppose you want to lengthen a pulse to a preset time.

Example: Lengthen a 50 ns TTL pulse to light an LED. Turning on an LED for only 50 ns would be nearly invisible.

Stretch $50 \mathrm{~ns} \rightarrow 1 \mathrm{~s}$
74121 One-Shot
Monostable Multivibrator

Input triggers:

Input triggers:
$\frac{A 1}{} \mathrm{~A} 2-$ edge triggers
$\mathrm{B}-$ level trigger
$\mathrm{Q}-$ output

Monostable Multivibrator (One-Shot)

555 as Monostable Multivibrator (one-shot)

\square
skip

555 as a One-Shot

Use: lengthen a pulse to a preset time.
Stretch $50 \mathrm{~ns} \rightarrow 1 \mathrm{~s}$

Trigger

Trigger (pin 2) is pulled HIGH when the switch is closed

$$
\begin{gathered}
\tau(\mathrm{s})=\ln (3) R(\Omega) C(F) \\
=1.1 R C \\
R=100 \mathrm{k} \Omega, C=10 \mu \mathrm{~F} \\
\tau=1.1 \mathrm{~s}
\end{gathered}
$$

555 Timer as a Monostable Multivibrator

555 as Astable Multivibrator (oscillator)

555 as an Oscillator

Triggers itself
C_{1} charges up from
$1 / 3 \mathrm{~V}_{\mathrm{cc}}$ to $2 / 3 \mathrm{~V}_{\mathrm{cc}}$
Charges to $t_{1}=\ln (2)\left(R_{1}+R_{2}\right) C_{1}$
At $2 / 3 \mathrm{~V}_{\mathrm{cc}}$ discharge $\mathrm{t}_{2}=\ln (2) \mathrm{R}_{2} \mathrm{C}_{1}$
On time: $t_{1}=0.693\left(R_{1}+R_{2}\right) C_{1}$ Off time: $\mathrm{t}_{2}=0.693 \mathrm{R}_{2} \mathrm{C}_{1}$

Period: $\mathrm{T}=\mathrm{t}_{1}+\mathrm{t}_{2}=0.693\left(\mathrm{R}_{1}+2 \mathrm{R}_{2}\right) \mathrm{C}_{1}$
Frequency: $f=1.44 /\left[\left(\mathrm{R}_{1}+2 \mathrm{R}_{2}\right) \mathrm{C}_{1}\right]$
Duty Cycle: on-time/period

$$
\mathrm{D}=\mathrm{R}_{1} /\left(\mathrm{R}_{1}+2 \mathrm{R}_{2}\right)
$$

Example

Flash an LED on for 0.1 s every second
See 555
Tutorial For $t_{\text {off }}>t_{\text {on }}$, add diode across R_{2} Then on time $=t_{1}=0.693 \mathrm{R}_{1} \mathrm{C}$

Off time $=\mathrm{t}_{2}=0.693 \mathrm{R}_{2} \mathrm{C}$
For $\mathrm{C}=10 \mu \mathrm{~F}$
$R_{1}=14.4 \mathrm{k} \Omega, \mathrm{R}_{2}=130 \mathrm{k} \Omega$

* Vary components in a running oscillator

Digital ICs that use Pulses

These include Flip-Flops, Counters, and Displays

Before, we had digital voltages that were more or less constant in time. When sending digital information, or performing computations, you need a train of digital pulses.
\rightarrow Sequential Logic

Computers operate by performing logic operations (AND/OR/NOT) sequentially in time. There is a clock-rate that runs at GHz pulse rates. Thus, logic gate operations change several times every nanosecond. And 64 operations (64-bit) can be performed at one time (Parallel Logic).

Flip-Flop Types

Flip-flops are heavily used for digital data transfer and storage and are commonly used in banks called "registers" for the storage of binary numerical data.

1 or 2 inputs
2 outputs Q and Q

See: Flip-flop (electronics) (wiki)

Flip-Flops

Why Flip-Flips?

Basic building block of all memory, counters, binary math

What is a Flip-Flop?

"Flip-flop" is the common name given to two-state devices which offer basic memory for sequential logic operations.

- Two outputs, two stable states Outputs ($\mathrm{Q}, \underline{\mathrm{Q}}$), $\quad(\mathrm{Q}=1$ or 0$)$
- Bistable Multivibrator

Also called a Latch, pulse sets Q and it remains there

```
SR Flip-flop (Set-Reset)
```


Basic data storage device. I \dagger holds data until reset.

$$
\begin{aligned}
& \text { RS Flip-Flop } \\
& \text { S=Set } \quad \rightarrow \mathrm{Q}=1, \mathrm{Q}=0 \\
& \text { R=Reset } \rightarrow \mathrm{Q}=0, \mathrm{Q}=1
\end{aligned}
$$

Set or reset the output Q

The first electronic flip-flop was invented in 1918 by William Eccles and F. W. Jordan. It consisted of two active elements (vacuum tubes).

RS Flip-Flop

Example: RS Flip-Flop
S=Set, R=Reset
Uses positive-going pulses
Contains 2 NORs

NOR - any 1 gives a 0
0 and 0 gives a 1

A	B	OR	NOR
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

RS Flip-Flop with pulse input

\mathbf{R}	\mathbf{S}	new \mathbf{Q}	new \mathbf{Q}	
0	0	nc	-	
0	1	1	0	set
1	0	0	1	reset
1	1	$?$	$?$	
nc= no change (last value)				

> Feedback wires maintain constant output values
RS Flip-Flop

NOR - (any 1 gives a 0) - (0 and 0 gives a 1)

RS Flip-Flop with pulse input
\mathbf{R} \mathbf{S} new \mathbf{Q} new \mathbf{Q} 0 0 nc - 0 1 1 0 set 1 0 0 1 reset 1 1 $?$ $?$

Questions?

RS Flip-Flop

\square

Example: $\underline{\text { RS }}$ Flip-Flop
$\underline{S}=$ Set, $\underline{R}=$ Reset
Uses negative-going pulses
Contains 2 NANDs

NAND - any 0 gives a 1

A	B	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

RS Flip-Flop with pulse input

$\underline{\mathbf{S}}$	$\underline{\mathbf{R}}$	new \mathbf{Q}	new \mathbf{Q}	
1	1	nc	-	
0	1	1	0	(set)
1	0	0	1	(reset)
0	0	$?$	$?$	
nc=no change (last value)				

Summary: RS and RS Flip-Flops

RS Flip-Flop
Uses negative-going pulses
Contains 2 NANDs
Any 0 gives a 1

Don't get confused about the RS or RS notation.
RS refers to a positive-going pulse.
RS refers to a negative-going pulse.
Most people simple drop the (NOT) bars on R and S and assume either positive-going or negative-going pulses.

Questions?

Clocked Flip-Flop

Clock Pulse Notation
Clock $=$ CK $=$ CLK $=$ CP $=$ Enable CLK, also called Enable

Clock pulse enables inputs

Nothing changes unless there is a clock pulse

CLK $=0 \rightarrow$ no change in outputs
CLK $=1 \rightarrow$ new RS changes output

Edge (rising) triggering

D Latch - Value Enabled

> D latch
> Only one input = D plus enable = E

The D Latch captures the value of the D-input whenever enable is on, $\mathrm{E}=1$.

That captured value becomes the Q output. At other times, the output Q does not change.

Value Enabled
Depends on the value of E , not edge triggered.

D-latch and Flip-Flop (0-4:53, shows timing), 15:42

Value Enabled

Clocked D Flip-Flop - Edge Triggered

By far the most important FF Stores one input (MEMORY)

 Clocked D Flip-Flop Only one input = D plus clock pulse $=$ CLK

The D flip-flop captures the value of the D-input at a definite portion of the clock cycle (such as the rising edge of the clock).

Edge Triggering
That captured value becomes the Q output. At other times, the output Q does not change.

The D flip-flop can be viewed as a memory cell, a zero-order hold, or a delay line.

Edge triggering (rising)

* Watch: D-latch and Flip-Flop (11:20-12:10), 15:42

Enabling/Triggering Flip-Flops

\square

> D Latch - value enabled
> D Flip-Flop - edge triggered

Value Enabling

Edge triggering
Regular D-latch response

during these time periods

JK Flip-Flop

JK Flip-Flip

Most powerful Can be configured as RS-FF, D-FF, T-FF

The JK flip-flop augments the behavior of the SR flip-flop by interpreting $\mathrm{J}=$ Set and $\mathrm{K}=$ Reset.

$$
\mathrm{Q}_{0} \text { goes into } \mathrm{Q}_{\text {next }}
$$

- The combination $J=1, K=0$ is a command
to set the flip-flop $\left(\mathrm{Q}_{\text {next }}=1\right)$
- The combination $\mathrm{J}=0, \mathrm{~K}=1$ is a command to reset the flip-flop ($\mathrm{Q}_{\text {next }}=0$)
- The combination $\mathrm{J}=\mathrm{K}=1$ is a command to toggle the flip-flop ($\mathrm{Q}_{0} \rightarrow \underline{\mathrm{O}}_{0}$) On the CLK edge, Q_{0} is set to $\mathrm{Q}_{\text {next }}=\mathrm{Q}_{0}$.

$$
Q_{\text {next }}=J \underline{Q}_{0}+\underline{K} Q_{0}
$$

			K Fli	-Flop	
	J	K	CLK	Qnext	
	0	0	\uparrow	Q_{0}	hold
	1	0	\uparrow	1	set
	0	1	个	0	reset
$\mathrm{OK} \longrightarrow$	1	1	个	Q_{0}	toggle

Watch: JK and T Flip-Flop, (0-8:15) 13:09 *
Questions?

T Flip-Flop: TOGGLE

Clocked T Flip-Flop: TOGGLE

Only one input $=T$ plus clock pulse $=\mathbf{C P}$

If the T input is high, the T flip-flop changes state ("toggles") whenever the clock input is strobed.

$$
\text { Simply } \mathrm{Q} \rightarrow \underline{\mathrm{Q}}
$$

If the T input is low, the flip-flop holds the previous value.

This behavior is described by:

$$
\mathbf{Q}_{\mathrm{next}}=\mathbf{T} \underline{\mathbf{Q}}+\underline{\mathbf{T}} \mathbf{Q}
$$

[^0]
Toggle from JK Flip-Flop

Make JK-FF into simple Toggle
 $$
\text { Set } J=K=1
$$

Each time a clock pulse edge comes, the output is toggled.

$$
\mathrm{Q} \rightarrow \underline{\mathrm{Q}} \rightarrow \mathrm{Q} \rightarrow \underline{\mathrm{Q}} \rightarrow \mathrm{Q} \rightarrow
$$

Use toggle from JK flip-flop as a binary counter

Frequency is $1 / 2$
$f \rightarrow f / 2$

Questions?

Binary Counter, Ch. 24

Binary Counter

Counts how many clock pulses come by

Use the JK-FF in TOGGLE mode

* Watch: Binary Counter, 20 sec

See Binary Counter details, 10 min

Lab-8b
 Flip-Flop, Counters, Displays

- Design and construct a binary counter circuit using JK flip-flops
- The circuit cycles through the binary numbers 000-111
- Convert binary numbers to BCD
- Light LED digital number display

Square wave generator	+	Combine 3 74112 flip flops		SN74LS47N BCD-to-seven-segment decoder/driver	+	LTS-4801B 7-segment LED for digits 0-9

Lab-8b, Roll the Dice

Make 4-bit Counter Three 74112 JK-FF

$\mathrm{R}_{\mathrm{x}}=200-500 \Omega$

LTS-4801B
7-segment LED for digits 0-9 common anode

See Decoder/Display

Note: " A " is the least significant bit (CBA)

Wednesday EXAM-2, Nov 18
Magnetoelectronics
Optoelectronics
Digital Electronics
Pulsed ICs

mwisho

[^0]: * Watch: JK and T Flip-Flop, (8:15+) 13:09

