Avoiding Circuit Mistrakes Mistakes

(1) Does the protoboard circuit look like the circuit diagram?

(2) Is the wiring simple and easy to troubleshoot?

Review Semiconductors

- Semiconductors
 - Resistivity (ρ), R= ρL/A a material property
 - Si, GaAs, InN, CdTe

<valence>=4 bonding electrons

- **Doping in Semiconductors**
 - Donor, *n*-type conduction to the right in periodic table
 - Acceptor, *p*-type conduction to the left in periodic table
 - **ρ=1/neμ**, μ=mobility, σ=1/ρ

pn-Junction Diode

- Depletion Region narrows in forward bias
- Depletion Region widens in reverse bias

Transistors

- 2 diodes
- Bias the base input

II	III	IV	V	VI
	В	С	Ν	0
	AI	Si	Р	S
Zn	Ga	Ge	As	Se
Cd	In	Sn	Sb	Те
Hg				

Questions ?

$$V_{OUT} = V_0 \left(\frac{R_T}{R_T + R_0} \right)$$

Any Transistor

- Base-controlled VARIABLE RESISTOR
- Use in a VOLTAGE DIVIDER circuit

MOSFET

Oxide layer prevents current into the gate

CMOS

One FET is always off, the other FET is always on. No current flows to ground when off.

Questions ?

Calendar of Topics Covered Physics PHYS 2371/2372, Electronics for Scientists Don Heiman and Hari Kumarakuru Northeastern University, Fall 2020

Also see Course Description and Syllabus

This is a schedule of the topics covered, but it may be modified occasionally (10/02/2020).

Week #	Lectures	Weekly Topics (Chs.)	Homework (Ch-Problem)	Lab Experiments (always look for latest version)
IV Sept 30-Oct 2	Wed Lecture Semicond pdf Semicond video	Solid State Devices (Ch-40) <i>p-n</i> Junction Diodes (Ch-41) Transistors/Circuits (Ch-42-45)	<u>HW Handout</u>	<u>Worksheet-4</u> <u>Worksheet-4 video</u> Say Hello (and Goodbye) to the Transistor
V Oct 7-9	Wed Lecture Operational Amplifiers	Op-Amp Basics (Ch-28, 31) Basic Op-Amp Circuits (Ch-29)	<u>28-1/3/4, 29-</u> <u>1/2/3/4</u>	Lab-5, <i>Op-Amps</i>
VI Oct 14	Wednesday Study for EXAM-1	Study for EXAM-1 Basics, AC Circuits, Semiconductors, Op-amps		No Lab
VII Oct 19, 21-23 MON/WED	MONDAY EXAM-I	Wed Lecture <u>Magnetoelectronics</u> Magnetic induction/flux Transformers (Ch-11)	<u>11-all</u>	Lab-6, Build a Magnetometer

TODAY

Op-Amp Basics, Ch. 28 Op-Amp Circuits, Ch. 29

□ Why Op-Amps?

- Linear amplification
- Much easier to configure

Golden Rules

- Simple way to design Gain

□ What can we do with Op-Amps?

- Noninverting amplifier
- Voltage follower
- Current-to-voltage converter

□ Do Math with Op-amps

- Simple summing amplifier
- Difference amplifier
- Differentiator
- Integrator

Amplifier Uses for Op-Amps

Linear Amplifier

Amplify Voltage, Current, Power

Gain in Decibel Units

Voltage Gain		Power Gain		
Gv	dB		G _P	dB
10-2	-40		10-2	-20
1	0		1	C
10	20		10	10
100	40		100	20
1000	60		1000	30
104	80		10 ⁴	40
10 ⁵	100		10 ⁵	50
10 ⁶	120		10 ⁶	60

Questions?

History of Operational Amplifiers

Negative feedback

Negative feedback is required for self-regulation or to control the Gain

1927: Negative feedback

Harold Black first developed negative feedback principles as a passenger on the ferry (from Hoboken Terminal to Manhattan) on his way to work at Bell Laboratories. (see article)

1930's: Negative feedback amplifier Harold Black, Paul Voigt, Alan Blumlein, B.D.H. Telle

1941: A vacuum tube op-amp Patented by Karl D. Swartzel Jr. of Bell Labs Contained <u>vacuum tubes</u> to achieve a gain of 90 dB Used in WW II <u>radar</u> system

1947: An op-amp with an non-inverting input

First defined in a paper^[15] by John Ragazzini of Columbia U A footnote mentioned a 2-input op-amp design by a **student** Loebe Julie.

First op-amp to have inverting and non-inverting inputs.

Operational Amplifier (Op-Amp)

Integrated circuit contains

- 20 transistors
- 11 resistors
- 1 capacitor

Many Youtube videos www.youtube.com/results?search_query=op+amp

What does the output circuit look like?

Op Amp or Op-amp

Example, G=10 If $V_{-}=1 V$, $V_{+}=0 V$ $V_{-} > V_{+}$ then $V_{out} = -10 V$ If $V_{-}=0 V$, $V_{+}=1 V$ $V_{+} > V_{-}$ then $V_{out} = +10 V$

Questions?

Power Supply for Op-Amp

$\frac{-V}{Dual Supply}$ Needs a dual voltage supply $+V_{0} \text{ and } -V_{0} \text{ (also called } V_{cc})$

The power supply is usually not shown in the circuit

Cannot get more V_{out} than the power supply V_o

Example, $G = 10^5$

$$V_{-}= 1 V$$
, $V_{+}= 0 V$
 $V_{out} \sim -V_{o}$ (supply voltage)

 $V_{-}=0 V$, $V_{+}=1 V$ $V_{out} \sim +V_{o}$ (supply voltage)

Questions ?

Simple Circuit: Ideal inverting amplifier

R_f = feedback resistor

- puts part of the output on inverting (-) input

Question: What happens if you put part of the output on the noninverting (+) input? (positive feedback)

Answer: output saturates to maximum voltage (like a microphone in front of a speaker)

Compute Op-Amp Circuit Gain

Golden Rules

- 1. Assume op-amp input voltages are equal
 - Virtual Ground Approximation
- 2. Assume no current flows into op-amp inputs
 - Infinite Impedance Approximation

Op-amps are designed so that the output adjusts *automatically*

to make the 2 op-amp input voltages equal.

Apply Rule-1 : if V₊=0 then V₋=V₊=0 (at ground) Apply Rule-2 : No currents flow into op-amp (ground) $I_R = I_{Rf} = I$ assume current CCW Now, $V_{in} = I_R R$ assume V_{in} is positive and $V_{out} = -I_{Rf} R_f$ since I direction is reversed $I = V_{in}/R = -V_{out}/R_f$ so $V_{out} = -V_{in} (R_f/R)$ and Gain= $V_{out}/V_{in} \rightarrow G_o = -R_f / R$

Note: Current is toward V=0 for R Current is away from V=0 for Rf

This gives V_{in} and V_{out} opposite signs and **G** is negative.

Basics of Opamp circuits (0-2:50)

Questions ?

Nominal versus Real Op-Amp Gain

- Nominal Gain, **G**_o, from Golden Rules
- **Real** Gain, **G**, is what the circuit provides
- **Open loop** Gain, **A**, what the op-amp can provide

$$G_o = -R_f/R$$
 nominal gain
 $G = \left(\frac{-R_f}{R}\right) \frac{A}{A + (R_F/R) + 1}$ real gain
A = open loop gain (~10⁵)

Prob. 28-2

Given R=10 k Ω and R_f=1 M Ω , compute nominal gain G_o, real gain G and error for open loop gains of A=10, 10³, and 10⁶.

Use $G_o = -R_f/R$ as nominal or closed loop gain. $G_o = -1 M\Omega/10 k\Omega = -100$ nominal gain Real gain is $G = G_o A/(A+(R_f/R)+1)$

Real gain divided by nominal gain For A= 10, $G/G_o = 10/(10+100+1) = 10/111$ For A= 10³, $G/G_o = 10^3/(10^3+100+1) = 1000/1101$ For A= 10⁶, $G/G_o = 10^6/(10^6+100+1) = 1,000,000/1,000,101$ Error = 100% [(G - G_o)/G_o] = 100% [G/G_o -1]

741 Op-Amp Device Characteristics

~ skip

741 Frequency Response

If gain is large, cannot amplify high *f*.

If you want high *f*, need to keep gain low.

Things you can do with an Op Amp

Better Inverting Amplifier

Noninverting Amplifier

Voltage Follower

Current-to-voltage Converter

Simple Summing Amplifier

Difference Amplifier

Differentiator

Integrator

Better Inverting Amplifier

Noninverting Amplifier

Voltage Follower

Current-to-voltage Converter

Simple Summing Amplifier

Difference Amplifier

Differentiator

Integrator

Eliminate input bias current

 $G = -R_f / R_1$ $\frac{1}{R_g} = \left(\frac{1}{R_f} + \frac{1}{R_1 + R_{source}}\right)$

Better Inverting Amplifier

Noninverting Amplifier

Voltage Follower

Current-to-voltage Converter

Simple Summing Amplifier

Difference Amplifier

Differentiator

Integrator

Positive in Positive out

$$I_{R_{f}} = I_{R} = I, \text{ since } I_{-} = 0$$

$$V_{in} = IR, \text{ since } V_{in} = V_{-} = IR$$

$$V_{out} - V_{in} = IR_{f}$$

$$V_{out} = V_{in} + V_{in} (R_{f} / R)$$

$$G = V_{out} / V_{in} = R_{f} / R + 1$$

skip

Better Inverting Amplifier

Noninverting Amplifier

Voltage Follower

Current-to-voltage Converter

Simple Summing Amplifier

Difference Amplifier

Differentiator

Integrator

$$V_{in} = V_{+}$$
$$V_{out} = V_{-}$$
$$V_{in} = V_{out}$$
$$G = 1$$

High Z_{in} implies low current (I_{in} ~ V/Z_{in})

skip

Better Inverting Amplifier

Noninverting Amplifier

Voltage Follower

Current-to-voltage Converter

Simple Summing Amplifier Difference Amplifier Differentiator

Integrator

Current In Voltage Out

$$V_{+} = 0, \quad V_{-} = V_{+}$$
$$I_{in} = I_{Rf}$$
$$V_{out} = -I_{in} R_{f}$$

Better Inverting Amplifier Noninverting Amplifier Voltage Follower Current-to-voltage Converter Inverting **Summing** Amplifier **Difference** Amplifier **Differentiator** Integrator

Use Op-amps

to do MATH !

They can even do calculus

Better Inverting Amplifier

Noninverting Amplifier

Voltage Follower

Current-to-voltage Converter

Inverting Summing Amplifier

Difference Amplifier

Differentiator

Integrator

Add voltages

skip **"Differential Amplifier**" $R_{\rm f}$ R_1 ⊷V_{out} $I_{+} = I_{-} = 0, V_{+} = V_{-}$ For $R_{1} = R_{2} = R, R_{g} = R_{f}$ $V_{+} = V_{2} \frac{R_{f}}{R + R_{f}}$ $\frac{V_{out} - V_{-}}{R_{f}} = I_{Rf} = I_{R1} = \frac{V_{-} - V_{1}}{R_{1}}$ Let $V_{\pm} = V_{\pm}$ and substitute for V_{\pm} $V_{out} = \frac{R_f}{R} (V_2 - V_1)$

Better Inverting Amplifier

Noninverting Amplifier

Voltage Follower

Current-to-voltage Converter

Simple Summing Amplifier

Difference Amplifier

Differentiator

Integrator

Read Wikipedia

for R₁≠R₂ and R_g ≠R_f <u>http://en.wikipedia.org/wiki/Operational</u> <u>amplifier_applications</u>

Questions?

Better Inverting Amplifier Noninverting Amplifier

Voltage Follower

Current-to-voltage Converter

Simple Summing Amplifier

Difference Amplifier

Differentiator

Integrator (inverting)

$$V_{-} = V_{+} = 0 \text{ since grounded}$$

$$I_{C} = I_{R} = I \text{ since } I_{-} = 0$$

$$V_{in} = IR$$

$$Q = CV_{out}, I = \frac{dQ}{dt} = -C\frac{dV_{out}}{dt}$$

$$I = V_{in} / R = -C\frac{dV_{out}}{dt}$$

$$\int \left[\frac{1}{RC}V_{in} = -\frac{dV_{out}}{dt}\right] dt$$

Again τ = RC units of time (s)

For a sine wave $\langle G \rangle = 1/\omega\tau$

Questions ?

Homework Example (Ch. 29)

Begin with the voltages **X** and **Y**. The output voltage from the right hand op-amp is

$$V_{0X} = XG_X = X(-\frac{R_f}{R}) = X(-\frac{5R}{R}) = -5X$$

Given the circuit, write the equation.

The left hand op-amp is in an integrator circuit,

so $V_{out} = -\frac{1}{RC} \int V_{in} dt$ for that op-amp.

Then at point $V_{0Y} = -\frac{1}{RC} \int Y dt$, where Y is the input voltage. V_{0Y} is then input in the right hand op-amp, so V_{0Y} is multipled by the right hand gain $G = -\frac{5R}{5R} = -1$ to give $\left(-\frac{1}{RC}\int Y dt\right)(-1) = \frac{1}{RC}\int Y dt$.

The total output is now $V_0 = -5X + \frac{1}{RC}\int Ydt$

Questions ?

Homework Example, Ch. 29

Given the equation, draw the op-amp circuit.		
The given output voltage is	$V_{o} = +4X - 6Y - 3\frac{dZ}{dt}.$	are vo

X, Y and Z are voltages

Begin with the voltage Y since that term is negative. Draw an inverting amplifier with $G_y = -6$, using R and $R_f = 6R$.

You need a differentating circuit for Z, so add a capacitor C to the input of that op-amp.

For a differentiator $V_{out} = -RC \frac{dV_{in}}{dt}$. You need an output of $-3 \frac{dZ}{dt}$, and since $R_f = 6R$, then 6RC = 3 or $C = \frac{1}{2R}$.

Finally, you need a 4X output.

Add a second op-amp on the left with $G_{1X} = -4$, using R and $R_f = 4R$. Output this V=-4X into the right hand inverting op-amp

with
$$G_{2X} = -1 = -\frac{6R}{6R}$$
.

Thus the output from X is $V_{ox} = G_{1x}G_{2x} = (-4X)(-1) = +4X$.

Questions?

Lab Experiment – 5

Op-Amp and Circuits

Don't forget to power the chip with +12 V and -12 V or +15 V and -15 V

Use the power supply ground as the ground for the input (V₊ or V₋) and the output (V_{out}).

We are here to help

Please

- ask lots of questions in the lab
- come to Zoom on Monday
- email questions to TA or me

Protoboard (breadboard) Wiring

The 5-hole rows are connected horizontally. The long red/blue rows are connected vertically.

Typical layout with voltage on the long vertical rows.

741 op-amp circuit

Lab-5, Op-Amps and Circuits

Physics PHYS 2371/2372, Electronics for Scientists Don Heiman and Hari Kumarakuru, Northeastern University

I. Op-amp Basics

Connect +V_o, -V_o (~ \pm 15 V) to power the 741. Don't mistake the power supply voltages (+V_o and -V_o) with the inputs denoted as V₊ and V₋ in textbooks.

- 1. What is V_{out} when +5 V is applied to the inverting input?
- 2. What is V_{out} when +5 V is applied to noninverting input?
- 3. Why does the output voltage saturate near the supply voltages?
- 4. What is the maximum output current that the 741 can supply?
- 5. What is the maximum power a 741 can deliver to an 8 Ω speaker?

II. Frequency Dependence

III. Differentiator Circuit

IV. Integrator Circuit

V. Summary

Written Lab Report is required.

See the report <u>Template</u>.

Please

- read the instructions before the lab

- visit the Monday discussion section

