Electronics - PHYS 2371/2

## Avoiding Circuit Mistrakes Mistakes


(1) Does the protoboard circuit look like the circuit diagram?
(2) Is the wiring simple and easy to troubleshoot?


## Review Semiconductors

$\square$ Semiconductors

- Resistivity ( $\rho$ ), $\mathrm{R}=\rho \mathrm{L} / \mathrm{A}$
a material property
- Si, GaAs, InN, CdTe
<valence>=4 bonding electrons
$\square$ Doping in Semiconductors
- Donor, $n$-type conduction
to the right in periodic table
- Acceptor, $p$-type conduction
to the left in periodic table
- $\rho=1 / n e \mu, \mu=$ mobility, $\sigma=1 / \rho$pn-Junction Diode
- Depletion Region narrows in forward bias
- Depletion Region widens in reverse biasTransistors
- 2 diodes
- Bias the base input

| II | III | IV | V | VI |
| :---: | :---: | :---: | :---: | :---: |
|  | B | C | N | O |
|  | Al | Si | P | S |
| Zn | Ga | Ge | As | Se |
| Cd | In | Sn | Sb | Te |
| Hg |  |  |  |  |

Forward Direction


No External Voltage



## Questions ?

## Electronics - PHYS 2371/2

## Review Transistors

Transistors- Bipolar Junction Transistor - npn, pnp
- Base-controlled variable resistor
- Use as Voltage Divider circuit
- Regimes:


$$
\begin{array}{ll}
\text { cut-off } & R \rightarrow \text { large } \\
\text { linear } & R \rightarrow \text { finite } \\
\text { saturated } & R \rightarrow \text { small }
\end{array}
$$

$$
V_{O U T}=V_{0}\left(\frac{R_{T}}{R_{T}+R_{0}}\right)
$$

Any Transistor

- Base-controlled VARIABLE RESISTOR
- Use in a VOLTAGE DIVIDER circuit


## Electronics - PHYS 2371/2

## Review Transistors

$\square$ FET - Field Effect Transistor

$$
R=\rho L / A
$$

Area changes by electric field via applied voltage

- 99.9999+ \% of all transistors

MOSFET - Metal Oxide Semiconductor FET

$\square$ CMOS - Complementary MOS
MOSFET
Oxide layer prevents current into the gate


CMOS
One FET is always off, the other FET is always on.
No current flows to ground when off.

## Questions ?

## Electronics - PHYS 2371/2



Calendar of Topics Covered Physics PHYS 2371/2372, Electronics for Scientists

Don Heiman and Hari Kumarakuru Northeastern University, Fall 2020

Also see Course Description and Syllabus


This is a schedule of the topics covered, but it may be modified occasionally (10/02/2020).

| Week \# | Lectures | Weekly Topics (Chs.) | Homework <br> (Ch-Problem) | Lab Experiments <br> (always look for latest version) |
| :---: | :---: | :---: | :---: | :---: |
| IV <br> Sept 30-Oct 2 | Wed Lecture <br> Semicond pdf <br> Semicond video | Solid State Devices (Ch-40) <br> p-n Junction Diodes (Ch-41) <br> Transistors/Circuits (Ch-42-45) | HW Handout | Worksheet-4 <br> Worksheet-4 video <br> Say Hello (and Goodbye) <br> to the Transistor |
| V <br> Oct 7-9 | Wed Lecture <br> Operational <br> Amplifiers | Op-Amp Basics (Ch-28, 31) <br> Basic Op-Amp Circuits (Ch-29) | $\underline{\text { 28-1/3/4, 29- }}$ | 1/2/3/4 |

## TODAY

Op-Amp Basics, Ch. 28
Op-Amp Circuits, Ch. 29
Why Op-Amps?

- Linear amplification
- Much easier to configure


## Golden Rules

- Simple way to design Gain

What can we do with Op-Amps?

- Noninverting amplifier
- Voltage follower
- Current-to-voltage converter


## Do Math with Op-amps

- Simple summing amplifier
- Difference amplifier
- Differentiator
- Integrator


## Electronics - PHYS 2371/2

## Amplifier Uses for Op-Amps



## Electronics - PHYS 2371/2

## Linear Amplifier



$$
\begin{array}{ll} 
& \text { Voltage Gain } \\
& \mathrm{G}_{\mathrm{V}} \equiv \mathrm{~V}_{\text {out }} / \mathrm{V}_{\text {in }} \\
\cdot \mathrm{G}_{\mathrm{V}} \gg 1, \text { e.g. } & \mathrm{G}_{\mathrm{V}} \sim 10^{5} \\
\cdot \mathrm{G}_{\mathrm{V}}=1, & \text { unity gain (current gain) } \\
\cdot 0<\mathrm{G}_{\mathrm{V}}<1, & \text { attenuator } \\
\cdot \mathrm{G}_{\mathrm{V}}<0, \text { e.g. } \mathrm{G}_{\mathrm{V}}=-3, & \text { inverting }
\end{array}
$$



## Electronics - PHYS 2371/2

## Gain in Decibel Units

| Decibels <br> dB units |
| :---: |
| Voltage Gain |
| $\mathrm{G}_{\mathrm{v}}=10^{\mathrm{dB} / 20}$ |
| $\mathrm{~dB}=20 \log \left(\mathrm{G}_{\mathrm{v}}\right)$ |
| Power $=\mathrm{V}^{2} / \mathrm{R}$ |
| Power Gain |
| $\mathrm{G}_{\mathrm{p}}=10^{\mathrm{dB} / 10}$ |
| $\mathrm{~dB}=10 \log \left(\mathrm{G}_{\mathrm{p}}\right)$ |


| Voltage Gain |  |
| ---: | ---: |
| $\mathrm{G}_{\mathrm{v}}$ | dB |
| $10^{-2}$ | -40 |
| 1 | 0 |
| 10 | 20 |
| 100 | 40 |
| 1000 | 60 |
| $10^{4}$ | 80 |
| $10^{5}$ | 100 |
| $10^{6}$ | 120 |


| Power Gain |  |
| ---: | ---: |
| $\mathrm{G}_{\mathrm{p}}$ | dB |
| $10^{-2}$ | -20 |
| 1 | 0 |
| 10 | 10 |
| 100 | 20 |
| 1000 | 30 |
| $10^{4}$ | 40 |
| $10^{5}$ | 50 |
| $10^{6}$ | 60 |

## Questions ?

## Electronics - PHYS 2371/2

## History of Operational Amplifiers

## Negative feedback

## Negative feedback is required for self-regulation or to control the Gain

## 1927: Negative feedback

Harold Black first developed negative feedback principles as a passenger on the ferry (from Hoboken Terminal to Manhattan) on his way to work at Bell Laboratories. (see article)

1930's: Negative feedback amplifier
Harold Black, Paul Voigt, Alan Blumlein, B.D.H. Telleॄ

## 1941: A vacuum tube op-amp

Patented by Karl D. Swartzel Jr. of Bell Labs
Contained vacuum tubes to achieve a gain of 90 dB


Used in WW II radar system
1947: An op-amp with an non-inverting input
First defined in a paper ${ }^{[15]}$ by John Ragazzini of Columbia $U$ A footnote mentioned a 2-input op-amp design
by a student Loebe Julie.
First op-amp to have inverting and non-inverting inputs.


## Electronics - PHYS 2371/2

## Operational Amplifier (Op-Amp)

| Semiconductor Op-Amp |
| :---: |
| Invented in 1966 |
| at Fairchild Semiconductors |
| 741 General purpose op-amp (1968) |
|  |
| Integrated circuit contains |
| 20 transistors |
| 11 resistors |
| 1 lapacitor |

Many Youtube videos
www.youtube.com/results?search query=op+amp


What does the output circuit look like?

## Electronics - PHYS 2371/2

## Op Amp or Op-amp

## Two inputs <br> Noninverting (+) <br> Inverting (-)

As $V_{\text {in }}$ increases
Noninverting: $\mathrm{V}_{\text {out }}$ increases Inverting: $\quad V_{\text {out }}$ decreases

Differential Inputs
$V_{\text {out }}$ goes positive or negative
$V_{\text {out }}=G\left(\left|V_{+}\right|-\left|V_{-}\right|\right)$
For $\mathrm{V}_{+}>\mathrm{V}_{-}, \mathrm{V}_{\text {out }}>0$ (pos)
For $\mathrm{V}_{+}<\mathrm{V}_{-}, \mathrm{V}_{\text {out }}<0$ (neg)


Example, G=10

$$
\begin{aligned}
& \text { If } \quad V_{-}=1 \mathrm{~V}, V_{+}=0 \mathrm{~V} \\
& \text { then } V_{-}>V_{+} \\
& \text {If }=-10 \mathrm{~V} \\
& \\
& \text { then } \quad V_{-}=0 \mathrm{~V}, V_{+}=1 \mathrm{~V} \\
& V_{+}>V_{-}=+10 \mathrm{~V}
\end{aligned}
$$

Questions ?

## Electronics - PHYS 2371/2

## Power Supply for Op-Amp

## Dual Supply

Needs a dual voltage supply
$+V_{o}$ and $-V_{o}$ (also called $V_{c c}$ )


The power supply is usually
not shown in the circuit

Cannot get more $\mathrm{V}_{\text {out }}$ than the power supply $\mathrm{V}_{\mathrm{o}}$
Example, G $=10^{5}$
$\mathrm{V}_{-}=1 \mathrm{~V}, \quad \mathrm{~V}_{+}=0 \mathrm{~V}$
$\mathrm{V}_{\text {out }} \sim \mathrm{V}_{\text {o }}$ (supply voltage)
$\mathrm{V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{+}=1 \mathrm{~V}$
$\mathrm{V}_{\text {out }} \sim \mathrm{V}_{\text {o }}$ (supply voltage)

Questions ?

## Electronics - PHYS 2371/2

## Simple Circuit: Ideal inverting amplifier

## $\mathrm{R}_{\mathrm{f}}=$ feedback resistor

- puts part of the output on inverting (-) input

Question: What happens if you put part of the output on the noninverting (+) input? (positive feedback)

Answer: output saturates to maximum voltage (like a microphone in front of a speaker)


## Electronics - PHYS 2371/2

## Compute Op-Amp Circuit Gain

## Golden Rules

1. Assume op-amp input voltages are equal

- Virtual Ground Approximation

2. Assume no current flows into op-amp inputs

- Infinite Impedance Approximation

Op-amps are designed so that the output adjusts automatically
to make the 2 op-amp input voltages equal.


## Note:

Current is toward $\mathrm{V}=0$ for R
Current is away from V=0 for Rf
This gives $V_{\text {in }}$ and $V_{\text {out }}$ opposite signs and $G$ is negative.
Apply Rule -1 : if $\mathrm{V}_{+}=0$ then $\mathrm{V}_{-}=\mathrm{V}_{+}=0$ (at ground)
Apply Rule-2 : No currents flow into op-amp (ground)
$\mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\mathrm{Rf}}=\mathrm{I}$ assume current CCW
Now, $V_{i n}=I_{R} R$ assume $V_{\text {in }}$ is positive
and $V_{\text {out }}=-I_{R f} R_{f}$ since I direction is reversed
$I=V_{\text {in }} / R=-V_{\text {out }} / R_{f}$
so $V_{\text {out }}=-V_{\text {in }}\left(R_{f} / R\right)$
Questions ?

$$
\text { and Gain }=V_{\text {out }} / V_{\text {in }} \quad \rightarrow \quad G_{o}=-R_{\mathrm{f}} / R
$$

## Electronics - PHYS 2371/2

## Nominal versus Real Op-Amp Gain

- Nominal Gain, $\mathbf{G}_{\mathbf{o}}$, from Golden Rules
- Real Gain, G, is what the circuit provides
- Open loop Gain, A, what the op-amp can provide

$\mathrm{G}_{\mathrm{o}}=-\mathrm{R}_{\mathrm{f}} / \mathrm{R}$ nominal gain
$\mathrm{G}=\left(\frac{-\mathrm{R}_{\mathrm{f}}}{\mathrm{R}}\right) \frac{\mathrm{A}}{\mathrm{A}+\left(\mathrm{R}_{F} / R\right)+1}$ real gain
$\mathrm{A}=$ open loop gain $\left(\sim 10^{5}\right)$


## Prob. 28-2

Given $R=10 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{f}}=1 \mathrm{M} \Omega$,
compute nominal gain $G_{0}$, real gain $G$ and error
for open loop gains of $A=10,10^{3}$, and $10^{6}$.
Use $G_{o}=-R_{f} / R$ as nominal or closed loop gain.
$G_{0}=-1 \mathrm{M} \Omega / 10 \mathrm{k} \Omega=-100$ nominal gain
Real gain is $G=G_{o} A /\left(A+\left(R_{f} / R\right)+1\right)$
Real gain divided by nominal gain
For $A=10, \quad G / G_{0}=10 /(10+100+1)=10 / 111$
For $A=10^{3}, \quad G / G_{0}=10^{3} /\left(10^{3}+100+1\right)=1000 / 1101$
For $A=10^{6}, \quad G / G_{0}=10^{6} /\left(10^{6}+100+1\right)=\mathbf{1 , 0 0 0}, \mathbf{0 0 0} / \mathbf{1 , 0 0 0 , 1 0 1}$
Error $=100 \%\left[\left(G-G_{0}\right) / G_{o}\right]=100 \%\left[G / G_{o}-1\right]$

## Electronics - PHYS 2371/2

## 741 Op-Amp Device Characteristics

~ skip

$$
\begin{aligned}
& \text { Open Loop Gain } A_{V}=10^{5}, 100 \mathrm{db} \\
& \qquad V_{\text {out }}=\mathbf{A \Delta V}=\mathrm{A}\left(\mathrm{~V}_{+}-\mathrm{V}_{-}\right)
\end{aligned} \rightarrow
$$



## Electronics - PHYS 2371/2

## 741 Frequency Response

## Gain-Bandwidth Product <br> $$
\begin{aligned} \mathrm{G}^{*} f_{\max } & =\text { constant } \\ & =10^{6} \mathrm{~Hz} \end{aligned}
$$

If gain is large, cannot amplify high $f$.

If you want high $f$, need to keep gain low.


Questions?

## Electronics - PHYS 2371/2

## Things you can do with an Op Amp

Better Inverting Amplifier<br>Noninverting Amplifier<br>Voltage Follower<br>Current-to-voltage Converter<br>Simple Summing Amplifier<br>Difference Amplifier<br>Differentiator<br>Integrator

## Electronics - PHYS 2371/2

## skip

Better Inverting Amplifier
Noninverting Amplifier
Voltage Follower
Current-to-voltage Converter
Simple Summing Amplifier
Difference Amplifier
Differentiator
Integrator

## Eliminate input bias current



## Electronics - PHYS 2371/2

Better Inverting Amplifier
Noninverting Amplifier
Voltage Follower
Current-to-voltage Converter
Simple Summing Amplifier
Difference Amplifier
Differentiator
Integrator


## Positive in

 Positive out

$$
\begin{aligned}
& I_{R_{f}}=I_{R}=I, \quad \text { since } I_{-}=0 \\
& V_{\text {in }}=I R, \text { since } \mathrm{V}_{\text {in }}=V_{-}=I R \\
& V_{\text {out }}-V_{\text {in }}=I R_{f} \\
& V_{\text {out }}=V_{\text {in }}+V_{\text {in }}\left(R_{f} / R\right) \\
& \quad G=V_{\text {out }} / V_{\text {in }}=R_{f} / R+1
\end{aligned}
$$

## Electronics - PHYS 2371/2

## skip

Better Inverting Amplifier
Noninverting Amplifier
Voltage Follower
Current-to-voltage Converter
Simple Summing Amplifier
Difference Amplifier
Differentiator
Integrator

## Unity gain

Buffer (current) amplifier High $\mathrm{Z}_{\text {in, }}$ Low $\mathrm{Z}_{\text {out }}$


$$
\begin{gathered}
V_{\text {in }}=V_{+} \\
V_{\text {out }}=V_{-} \\
V_{\text {in }}=V_{\text {out }} \\
G=1
\end{gathered}
$$

High $Z_{\text {in }}$ implies low current $\left(\mathrm{I}_{\text {in }} \sim \mathrm{V} / \mathrm{Z}_{\text {in }}\right)$

Low $Z_{\text {out }}$ implies high current ( $\mathrm{I}_{\text {out }} \sim \mathrm{V} / \mathrm{Z}_{\text {out }}$ )

## Electronics - PHYS 2371/2

## skip

Better Inverting Amplifier
Noninverting Amplifier
Voltage Follower
Current-to-voltage Converter
Simple Summing Amplifier
Difference Amplifier
Differentiator

## Current In Voltage Out



$$
\begin{aligned}
& V_{+}=0, \quad V_{-}=V_{+} \\
& I_{i n}=I_{R f} \\
& \boldsymbol{V}_{\text {out }}=-\boldsymbol{I}_{\text {in }} \boldsymbol{R}_{\boldsymbol{f}}
\end{aligned}
$$

## Electronics - PHYS 2371/2

Better Inverting Amplifier
Noninverting Amplifier
Voltage Follower
Current-to-voltage Converter
Inverting Summing Amplifier
Difference Amplifier
Differentiator

## Use Op-amps <br> to do MATH ! <br> They can even do calculus

## Electronics - PHYS 2371/2

## Add voltages

Better Inverting Amplifier
Noninverting Amplifier
Voltage Follower
Current-to-voltage Converter
Inverting Summing Amplifier
Difference Amplifier
Differentiator


Integrator


$$
\begin{aligned}
& V_{\text {out }}=-\frac{R_{f}}{R_{1}} V_{1}-\frac{R_{f}}{R_{2}} V_{2} \ldots \ldots-\frac{R_{f}}{R_{n}} V_{n} \\
& \text { For } R_{1}=R_{2} \ldots \ldots=R_{n}=R \\
& V_{\text {out }}=-\frac{R_{f}}{R}\left(V_{1}+V_{2} \ldots \ldots+V_{n}\right)
\end{aligned}
$$

## Electronics - PHYS 2371/2

| Better Inverting Amplifier skip | "Differential Amplifier" |
| :---: | :---: |
| Noninverting Amplifier <br> Voltage Follower <br> Current-to-voltage Converter <br> Simple Summing Amplifier |  |
| Difference Amplifier <br> Differentiator <br> Integrator <br> Read Wikipedia <br> for $R_{1} \neq R_{2}$ and $R_{g} \neq R_{f}$ <br> http://en.wikipedia.org/wiki/Operational amplifier applications | $\begin{aligned} & I_{+}=I_{-}=0, V_{+}=V_{-} \\ & \text {For } R_{1}=R_{2}=R, R_{g}=R_{f} \\ & V_{+}=V_{2} \frac{R_{f}}{R+R_{f}} \\ & \frac{V_{\text {out }}-V_{-}}{R_{f}}=I_{R f}=I_{R 1}=\frac{V_{-}-V_{1}}{R_{1}} \end{aligned}$ <br> Let $V_{-}=V_{+}$and substitute for $V_{+}$ $V_{\text {out }}=\frac{R_{f}}{R}\left(V_{2}-V_{1}\right)$ |

## Electronics - PHYS 2371/2

## Time-derivative of Voltage $d V_{\text {in }} / d t$

Better Inverting Amplifier
Noninverting Amplifier
Voltage Follower
Current-to-voltage Converter
Simple Summing Amplifier
Difference Amplifier
Differentiator (inverting)
Integrator


$$
\begin{aligned}
& V_{o u t}=-R C \frac{d V_{i n}}{d t} \\
& V_{o u t}=-\tau \frac{d V_{i n}}{d t}
\end{aligned}
$$

$$
\text { Again } \tau=\mathrm{RC}
$$

units of time (s)

## For a sine wave

## Questions?

## Electronics - PHYS 2371/2

## Time-integration of Voltage <br> $\int V_{i n} d t$

Better Inverting Amplifier
Noninverting Amplifier
Voltage Follower
Current-to-voltage Converter
Simple Summing Amplifier
Difference Amplifier
Differentiator
Integrator (inverting)



$$
\begin{aligned}
& V_{-}=V_{+}=0 \text { since grounded } \\
& I_{C}=I_{R}=I \text { since } I_{-}=0 \\
& V_{\text {in }}=I R \\
& Q=C V_{\text {out }}, I=\frac{d Q}{d t}=-C \frac{d V_{\text {out }}}{d t} \\
& I=V_{\text {in }} / R=-C \frac{d V_{\text {out }}}{d t} \\
& \int\left[\frac{1}{R C} V_{\text {in }}=-\frac{d V_{\text {out }}}{d t}\right] d t
\end{aligned}
$$

$$
\begin{gathered}
V_{o u t}=-\frac{1}{R C} \int_{0}^{t} V_{i n} d t \\
V_{o u t}=-\frac{1}{\tau} \int_{0}^{t} V_{i n} d t
\end{gathered}
$$

Again $\tau=$ RC units of time (s)

For a sine wave

$$
\langle G>=1 / \omega \tau
$$

## Electronics - PHYS 2371/2

## Homework Example (Ch. 29)

Given the circuit, write the equation.


Begin with the voltages $X$ and $Y$.
The output voltage from the right hand op-amp is
$V_{0 X}=X G_{X}=X\left(-\frac{R_{f}}{R}\right)=X\left(-\frac{5 R}{R}\right)=-5 X$.

The left hand op-amp is in an integrator circuit, so $V_{\text {out }}=-\frac{1}{R C} \int V_{\text {in }} d t$ for that op-amp.

Then at point $V_{0 Y}=-\frac{1}{R C} \int Y d t$, where Y is the input voltage. $V_{0 Y}$ is then input in the right hand op-amp, so $V_{O Y}$ is multipled by the right hand gain $\mathrm{G}=-\frac{5 \mathrm{R}}{5 \mathrm{R}}=-1$ to give $\left(-\frac{1}{R C} \int Y d t\right)(-1)=\frac{1}{R C} \int Y d t$.

The total output is now $V_{0}=-5 X+\frac{1}{R C} \int Y d t$

## Questions ?

## Electronics - PHYS 2371/2

Homework Example, Ch. 29


Given the equation, draw the op-amp circuit.
The given output voltage is $\mathrm{V}_{\mathrm{o}}=+4 \mathrm{X}-6 \mathrm{Y}-3 \mathrm{dZ} / \mathrm{dt}$. are voltages

Begin with the voltage $Y$ since that term is negative.
Draw an inverting amplifier with $G_{Y}=-6$, using $R$ and $R_{f}=6 R$.

You need a differentating circuit for $Z$, so add a capacitor C to the input of that op-amp.
For a differentiator $V_{\text {out }}=-\mathrm{RC}^{\mathrm{dV}} \mathrm{V}_{\text {in }} / \mathrm{dt}$.
You need an output of $-3 \mathrm{dZ} / \mathrm{dt}$,
and since $R_{f}=6 R$, then $6 R C=3$ or $C=1 / 2 R$.

Finally, you need a 4X output.
Add a second op-amp on the left with $\mathrm{G}_{1 \mathrm{X}}=-4$, using R and $\mathrm{R}_{\mathrm{f}}=4 \mathrm{R}$.
Output this $\mathrm{V}=-4 \mathrm{X}$ into the right hand inverting op-amp
with $G_{2 x}=-1=-\frac{6 R}{6 R}$.
Thus the output from $X$ is $V_{o x}=G_{1 X} G_{2 X}=(-4 X)(-1)=+4 X$.

## Electronics - PHYS 2371/2

Lab Experiment - 5

## Op-Amp and Circuits

Don't forget to power the chip with
+12 V and -12 V or
+15 V and -15 V
Use the power supply ground as the ground for the input ( $\mathrm{V}_{+}$or $\mathrm{V}_{-}$) and the output ( $\mathrm{V}_{\text {out }}$ ).

> We are here to help Please

- ask lots of questions in the lab
- come to Zoom on Monday
- email questions to TA or me


## Protoboard (breadboard) Wiring



The 5-hole rows are connected horizontally The long red/blue rows are connected vertically.


Typical layout with voltage on the long vertical rows.


741 op-amp circuit

## Electronics - PHYS 2371/2

## Lab-5, Op-Amps and Circuits

Physics PHYS 2371/2372, Electronics for Scientists Don Heiman and Hari Kumarakuru, Northeastern University

## I. Op-amp Basics

Connect $+\mathrm{V}_{\mathrm{o}},-\mathrm{V}_{\mathrm{o}}(\sim \pm 15 \mathrm{~V})$ to power the 741 . Don't mistake the power supply voltages $\left(+\mathrm{V}_{0}\right.$ and $\left.-\mathrm{V}_{0}\right)$ with the inputs denoted as $\mathrm{V}_{+}$and $\mathrm{V}_{-}$in textbooks.

1. What is $\mathrm{V}_{\text {out }}$ when +5 V is applied to the inverting input?
2. What is $\mathrm{V}_{\text {out }}$ when +5 V is applied to noninverting input?
3. Why does the output voltage saturate near the supply voltages?
4. What is the maximum output current that the 741 can supply?
5. What is the maximum power a 741 can deliver to an $8 \Omega$ speaker?
II. Frequency Dependence
III. Differentiator Circuit
IV. Integrator Circuit

## Written Lab Report is required.

## See the report Template.

## Electronics - PHYS 2371/2

## Please

- read the instructions before the lab
- visit the Monday discussion section


## 종 료

