Electronics - PHYS 2371/2

Review Digital Basics

L Logic Gates
AND, OR, NOT
NOR (NOT+OR)
XOR (eXclusive OR) XNOR

- NAND: NOT+AND

Make any gate with NANDS Least amount of transistors (cost/size)
[Half-Adder
Adds two binary digits

- Full- Adder

Half-adder, but includes carry bits

FOXTROT by Bill Amend

Calendar of Topics Covered
Physics PHYS 2371/2372, Electronics for Scientists
Don Heiman and Hari Kumarakuru
Northeastern University, Fall 2020
Also see Course Description and Syllabus

This is a schedule of the topics covered, but it may be modified occasionally (10/22/2020).

Week \#	Lectures	Weekly Topics (Chs.)	Homework (Ch-Problem)	Lab Experiments (always look for latest version)
$\begin{gathered} \text { VIII } \\ \text { Oct 28-30 } \end{gathered}$	Wed Lecture Optoelectronics Optoele Lecture	Photodiode, LED, Iaser	none	Lab-7, Optoelectronics (coupled LED-photodiode) $\underline{\text { Lab-7 Optoele video }}$
$\begin{gathered} \text { IX } \\ \text { Nov 2, 4-6 } \\ \text { MON/WED } \end{gathered}$	Mon/Wed Lectures MON Digital-1 Digital-1 Lecture WED Digital-2 Digital-2 Lecture	Digital Logic (Ch-19,22), Binary Numbers (Ch-54) Logical Networks (Ch-20)	19-all, 20-all	Lab-8a, Digital Circuits (truth table, 4-bit decoder) Lab-8a Digital video
X Nov 11-13	Wed Lecture Pulsed ICs Pulsed Lecture	Lecture: Pulsed ICs Digital Summary	21-1/2	Lab-8b, Pulsed Digital (Flip-flops, counter, displays) Lab-8b Pulsed video
XI Nov 18-20 WED EXAM	EXAM-II - Wed Final Project	EXAM-II: Magnetoelectronics, Optoelectronics, Digital/Pulsed		Final Project
$\begin{gathered} \text { XII } \\ \text { Nov 25-27 } \end{gathered}$	No Lecture	Thanksgiving		No Lab
$\begin{gathered} \text { XIII } \\ \text { Dec } 2 \end{gathered}$	Wed Lecture	Future Electronics		Project PowerPoint due Monday Dec 2 (EG361 or email file)
$\begin{gathered} \text { XIV } \\ \text { Dec } 7-9 \end{gathered}$	No Classes			

Digital Circuits

- Logic NETWORKS, Ch-20
- design a circuit
- miniterms
- Karnaugh Map
- simplifies miniterms
- Lab-8a
- Digital Circuits

Gates \rightarrow modular Circuits \rightarrow do Math, Store information

Minecraft Computers

Minecraft computer "BlueStone", 2012

- Describes various parts of a computer

16 Bit Minecraft Computer, 2012 (0-2:00)

- Two 16 bit Input Registers.
- 11 function - NOT A, NOT B, AND, OR, XOR, ADD, Cin ON, Shift Right, NOT Out. Zero A, Zero B

32 Bit Calculator in Minecraft, 2014 (0-1:00)

- 32 Bit Minecraft-Redstone-Calculator
- It took me about 800 hours to accomplish this gigantic project.

64 Bit Minecraft Computer, 2018

Inside Computers

The word "computer" refers to an object that can accept some input and produce some output.

See How Computers Add Numbers in One Lesson
(14:27, simple , 6:42->, 11:10->)
See How the CPU Works in One Lesson
(20:42, bus/registers details)

How a CPU is made $(10: 16,2013)$
Sand to Silicon - the Making of a Chip **(2:21, music)
How Microchips are made (8:53)
The Fabrication of Integrated Circuits $(10: 42,2010)$
Inside a Computer How Stuff Works (ad+3:24)
Inside a Google data center ** (0-1:01, 2:49-4:55)

Designing Digital Circuits, Ch-20

Now that we have digital gates, what do we do with them?

- Build digital circuits to do things -

Why NAND Gates?
 NAND/NOR 4 MOSFETs, AND/OR 6 MOSFETs NAND gates are smaller and cheaper than NOR. Thus, are faster because of less delay time.

Binary Addition and Multiplication

Binary ADDITION : A + B = S

An adder is a digital circuit that performs addition of numbers. In many computers and other kinds of processors adders are used in the arithmetic logic units or ALU. They are also utilized in other parts of the processor, where they are used to calculate addresses, table indices, increment and decrement operators, and similar operations. (Wiki)

A_{3}	A_{2}	A_{1}	A_{0}
$+B_{3}$	B_{2}	B_{1}	B_{0}
S_{3}	S_{2}	S_{1}	S_{0}

1-bit Full Adder

Same method as digital MULTIPLICATION (Wiki)

```
            1011 (this is }11\mathrm{ in decimal)
            x 1110 (this is 14 in decimal)
            ======
            0000 (this is 1011 x 0)
            1011 (this is 1011 x 1, shifted one position to the left)
                1011 (this is 1011 x 1, shifted two positions to the left)
+1011 (this is 1011 x 1, shifted three positions to the left)
=========
10011010 (this is 154 in decimal)
```


2-bit by 2-bit Multiplier

Designing Digital Circuits - Miniterms

Two-way Light

- 1 light bulb
- 23 -way light switches

Either switch turns on or off the light

RULE: for every " 1 " answer, then that is a miniterm

Write down the Boolean expression for each miniterm.

Only Rows 1 and 4 are miniterms.
Row-1, $(\mathbf{A} \cdot \underline{B})$
Row-4, (A•B)
Out $=(\underline{A} \cdot \underline{B})+(\mathbf{A} \cdot B)$

A	B	Light
dn \downarrow	dn	on
up \uparrow	dn	off
dn \downarrow	up	off
up \uparrow	up	on

Row	A	B	Light	XNOR
1	0	0	1	1
2	1	0	0	0
3	0	1	0	0
4	1	1	1	1

More Complex Digital Circuits

Example
Three inputs $-\mathbf{A}, \mathbf{B}, \mathbf{C}$
Given the truth table
Miniterms in rows $2,4,8$
row- \quad row- \quad row-8
Out $=A \cdot B \cdot \underline{C}+A \cdot B \cdot \underline{C}+\underline{A} \cdot \underline{B} \cdot \underline{C}$
Out $=A \cdot B \cdot \underline{C}+(A+\underline{A}) \cdot(\underline{B} \cdot \underline{C})$
but $A+\underline{A}=1$
Out $=\mathbf{A} \cdot \mathbf{B} \cdot \underline{C}+\underline{B} \cdot \underline{C}$

Distributive property

Truth Table

Row	Inputs			
	A	B	C	
1	1	1	1	0
2	1	1	0	1
3	1	0	1	0
4	1	0	0	1
5	0	1	1	0
6	0	1	0	0
7	0	0	1	0
8	0	0	0	1

Simplify equation ${ }^{* *}$ (4:56)

Karnaugh Maps

Truth Table

Row	A	B	C	D	Out
1	1	1	1	1	0
2	1	1	1	0	0
3	1	1	0	1	1
4	1	1	0	0	0
5	1	0	1	1	0
6	1	0	1	0	1
7	1	0	0	1	1
8	1	0	0	0	0
9	0	1	1	1	0
10	0	1	1	0	0
11	0	1	0	1	0
12	0	1	0	0	0
13	0	0	1	1	0
14	0	0	1	0	0
15	0	0	0	1	0
16	0	0	0	0	1

> Karnaugh Maps (K-maps) are graphical solutions that greatly simplify truth tables.

Truth Table

AB	00	01	11	10
00	1	0	0	0
01	0	0	1	1
11	0	0	0	0
10	0	0	0	1

Truth Table 20-3

Row	A	B	C	D	Out
1	1	1	1	1	0
2	1	1	1	0	0
3	1	1	0	1	1
4	1	1	0	0	0
5	1	0	1	1	0
6	1	0	1	0	1
7	1	0	0	1	1
8	1	0	0	0	0
9	0	1	1	1	0
10	0	1	1	0	0
11	0	1	0	1	0
12	0	1	0	0	0
13	0	0	1	1	0
14	0	0	1	0	0
15	0	0	0	1	0
16	0	0	0	0	1

Four inputs - A, B, C, D Four miniterms (Out=1)
out $=(A \cdot B \cdot C \cdot D)+(A \cdot \underline{B} \cdot C \cdot \underline{D})$
$+(A \cdot \underline{B} \cdot \underline{C} \cdot D)+(\underline{A} \cdot \underline{B} \cdot \underline{C} \cdot \underline{D}) \quad[B+\underline{B}=1$, drops out $]$
Out $=(\mathbf{A} \cdot \underline{C} \cdot \mathbf{D})+(\mathbf{A} \cdot \underline{B} \cdot \mathbf{C} \cdot \underline{D})+(\underline{A} \cdot \underline{B} \cdot \underline{C} \cdot \underline{D})$

Karnaugh Map - Example

Truth Table

AB CD	00	01	11	10
00	1	0	0	0
01	0	0	1	1
11	0	0	0	0
10	0	0	0	1

MATRIX RULE

Order top/side axes

- vary only one bit
when moving to next cell

COMBINE ADJACENT ELEMENTS
In second row of adjacent " 1 "
it does not matter what B is
Same so B drops out

Out $=(\mathrm{A} \cdot \underline{\mathrm{C}} \cdot \mathrm{D})+(\mathrm{A} \cdot \underline{\mathrm{B}} \cdot \mathrm{C} \cdot \underline{\mathrm{D}})+(\underline{\mathrm{A}} \cdot \underline{B} \cdot \underline{C} \cdot \underline{\mathrm{D}})$

Rules for Karnaugh Map Solutions

RULE-1: Order top/side table axes, vary only one bit when moving to next cell

RULE-2: Group even numbers of " 1 "s that are adjacent
You can wrap around the cylinder,
Truth Table

AB $C D$	00	01	11	10	00
00	1	0	0	1	1
01	0	0	0	0	0
11	1	0	0	0	1
10	1	0	1	0	1

Rules for Karnaugh Map Solutions

RULE-1: Order top/side table axes, vary only one bit when moving to next cell

RULE-2: group even numbers of " 1 "s that are adjacent
You can wrap around the cylinder, as in $A B=10 \rightarrow C D=00$

RULE-3: Each group is one miniterm
RULE-4: If input is both " 0 " and " 1 " you don't need that input.

RULE-5: You can use a miniterm more than once.

Truth Table

$A B$	00	01	11	10	00
$C D$					

(1) In the first column of adjacent of " 1 " s it does not matter what \mathbf{D} is and thus \mathbf{D} drops out ($\underline{\mathbf{A}} \cdot \underline{\mathbf{B}} \cdot \mathbf{C}$).
(2) In the top row of \sim adjacent of " 1 "s it does not matter what \mathbf{A} is and thus \mathbf{A} drops out ($\underline{B} \cdot \underline{C} \cdot \underline{D}$).

Out $=(\underline{A} \cdot \underline{B} \cdot \mathbf{C})+(\underline{B} \cdot \underline{C} \cdot \underline{D})+(\mathbf{A} \cdot \mathrm{B} \cdot \mathrm{C} \cdot \underline{\mathrm{D}}) \quad 3$ terms

Karnaugh Map Tutorial 4 Variable (K-map) (7:54)

Problem 20-1, solve for Y

Truth Table

Row	A	B	C	Y
1	1	1	1	0
2	1	1	0	1
3	1	0	1	1
4	1	0	0	0
5	0	1	1	0
6	0	1	0	0
7	0	0	1	1
8	0	0	0	1

Problem 20-1, solve for " f " segment

7-segment LED for digits 0-9
 Segments a-f

"BCD"
Binary-Coded Decimal
Conversion
digital $_{10} \leftarrow \rightarrow$ binary $_{2}$
$0-9_{10} \leftarrow \rightarrow$ ABCD $_{2}$

Digit	A	B	C	D	${ }^{\prime \prime} \mathrm{f}^{\prime}$
0	0	0	0	0	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
8	1	0	0	0	1
9	1	0	0	1	1

Truth Table for the " f " segment

AB $C D$	00	01	11	10
00	1	1	0	1
01	0	1	0	1
11	0	0	0	0
10	0	1	0	0

$$
\text { Out }=(\underline{A} \cdot \underline{C} \cdot \underline{D})+(\underline{A} \cdot B \cdot \underline{C})+(\mathbf{A} \cdot \underline{B} \cdot \underline{C})+(\underline{A} \cdot B \cdot \underline{D})
$$

Problem 20-3, solve for $A B<C D$

$\#_{10}$	$\#_{2}$	AB	CD
0	0000	00	00
1	0001	01	01
3	0011	11	11
2	0010	10	10

	$A B<C D$ Decimal numbers
	For $A B=0, \quad C D=1,2,3$
	For $A B=1, \quad C D=2,3$
	For $A B=2, \quad C D=3$

Truth Table for $\mathrm{AB}<\mathrm{CD}$

AB	00	01	11	10
CD				
00	0	0	0	0
01	1	0	0	0
11	1	1	0	1
10	1	1	0	0

Block of 4"1"s
It does not matter what \mathbf{B} and \mathbf{D} are so B and D drop out $=(\underline{A} \cdot C)$

Combine 2 top " 1 "s in first column $=(\underline{A} \cdot \underline{B} \cdot \mathbf{D})$
Combine 2 " 1 "s in third row $=(\underline{B} \cdot C \cdot D)$

$$
\text { Out }=(\underline{A} \cdot C)+(\underline{A} \cdot \underline{B} \cdot \underline{D})+(\underline{B} \cdot C \cdot D)
$$

Lab-8a, Digital Circuits

I. Test digital logic gates using inputs of 0 or +5 V .

Determine output using LED and current-limiting resistor.
II. Measure the truth table of a various gate.

Construct an XOR gate using a 4-gate 7400 NAND chips.
III. Design and construct a 4-bit decoder

Lab-8a, 4-bit Decoder
Design a 4-bit (ABCD) decoder circuit that lights an LED when the inputs correspond to the decimal numbers 3, 9 and 11.

Truth Table for 3

$\#$	A	B	C	D	Out
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	1
4					

Electronics - PHYS 2371/2

نهاية

