

- Half-Adder
 Adds two binary digits
- Full- Adder
 Half-adder, but includes carry bits

Calendar of Topics Covered Physics PHYS 2371/2372, Electronics for Scientists Don Heiman and Hari Kumarakuru Northeastern University, Fall 2020

Also see Course Description and Syllabus

This is a schedule of the topics covered, but it may be modified occasionally (10/22/2020).

Week #	Lectures	Weekly Topics (Chs.)	Homework (Ch-Problem)	Lab Experiments (always look for latest version)
VIII Oct 28-30	Wed Lecture Optoelectronics Optoele Lecture	Photodiode, LED, laser	none	Lab-7, Optoelectronics (coupled LED-photodiode) Lab-7 Optoele video
IX Nov 2, 4-6 MON/WED	Mon/Wed Lectures MON Digital-1 Digital-1 Lecture WED Digital-2 Digital-2 Lecture	Digital Logic (Ch-19,22), Binary Numbers (Ch-54) Logical Networks (Ch-20)	<u>19-all, 20-all</u>	Lab-8a, <i>Digital Circuits</i> (truth table, 4-bit decoder) Lab-8a Digital video
X Nov 11-13	Wed Lecture Pulsed ICs Pulsed Lecture	Lecture: Pulsed ICs Digital Summary	<u>21-1/2</u>	Lab-8b, Pulsed Digital (Flip-flops, counter, displays) Lab-8b Pulsed video
XI Nov 18-20 WED EXAM	EXAM-II - Wed Final Project	EXAM-II: Magnetoelectronics, Optoelectronics, Digital/Pulsed		<u>Final Project</u>
XII Nov 25-27	No Lecture	Thanksgiving		No Lab
XIII Dec 2	Wed Lecture	Future Electronics		Project PowerPoint due Monday Dec 2 (EG361 or email file)
XIV Dec 7-9	No Classes			

Digital Circuits

• Logic NETWORKS, Ch-20

- design a circuit

- miniterms

- Karnaugh Map

 simplifies miniterms
 - Lab-8a - Digital Circuits

•

Gates \rightarrow modular Circuits \rightarrow do Math, Store information

Minecraft Computers

Minecraft computer "BlueStone", 2012

- Describes various parts of a computer

16 Bit Minecraft Computer, 2012 (0-2:00)

- Two 16 bit Input Registers.
- 11 function NOT A, NOT B, AND, OR, XOR, ADD, Cin ON, Shift Right, NOT Out. Zero A, Zero B

32 Bit Calculator in Minecraft, 2014 (0-1:00)

- 32 Bit Minecraft-Redstone-Calculator
- It took me about 800 hours to accomplish this gigantic project.

64 Bit Minecraft Computer, 2018

Inside Computers

The word "computer" refers to an object that can accept some input and produce some output.

See How Computers Add Numbers in One Lesson (14:27, simple , 6:42->, 11:10->) See How the CPU Works in One Lesson (20:42, bus/registers details)

How a CPU is made (10:16, 2013) Sand to Silicon - the Making of a Chip **(2:21, music) How Microchips are made (8:53) The Fabrication of Integrated Circuits (10:42, 2010) Inside a Computer How Stuff Works (ad+3:24)

Inside a Google data center ** (0-1:01, 2:49-4:55)

Questions?

Designing Digital Circuits, Ch-20

Now that we have digital gates, what do we do with them?

- Build digital circuits to do things -

Why NAND Gates? **NAND**/NOR **4** MOSFETs, AND/OR **6** MOSFETs NAND gates are smaller and cheaper than NOR. Thus, are faster because of less delay time.

Binary Addition and Multiplication

Binary ADDITION : A + B = S

An **adder** is a <u>digital circuit</u> that performs <u>addition</u> of numbers. In many <u>computers</u> and other kinds of <u>processors</u> adders are used in the <u>arithmetic logic units</u> or ALU. They are also utilized in other parts of the processor, where they are used to calculate <u>addresses</u>, table indices, <u>increment and decrement operators</u>, and similar operations. (Wiki)

1-bit Full Adder

Same method as digital MULTIPLICATION (Wiki)

1011 (this is 11 in decimal)

x 1110 (this is 14 in decimal)

======

0000 (this is 1011 x 0)

1011 (this is 1011 x 1, shifted one position to the left) 1011 (this is 1011 x 1, shifted two positions to the left) + 1011 (this is 1011 x 1, shifted three positions to the left) ========

10011010 (this is 154 in decimal)

2-bit by 2-bit Multiplier

Designing Digital Circuits - Miniterms

- 1 light bulb ٠
- 2 3-way light switches Either switch turns on or off the light

RULE: for every "1" answer,

then that is a miniterm

Write down the Boolean expression for each miniterm. Only Rows 1 and 4 are miniterms. Row-1, (<u>A</u>·<u>B</u>) Row-4, $(A \cdot B)$ $Out = (\underline{A} \cdot \underline{B}) + (A \cdot B)$

	А	В
	dn ↓	dn
1	up ↑	dn
	dn ↓	up
ţ	up 个	up

Light	Row	А	В	Light	XNOR
on	1	0	0	1	1
off	2	1	0	0	0
off	3	0	1	0	0
on	4	1	1	1	1

More Complex Digital Circuits

Example Three inputs – A, B, C				
Given the truth table Miniterms in rows 2, 4, 8				
row-2 row-4 row-8 Out = $A \cdot B \cdot \underline{C} + A \cdot \underline{B} \cdot \underline{C} + \underline{A} \cdot \underline{B} \cdot \underline{C}$ Out = $A \cdot B \cdot \underline{C} + (A + \underline{A}) \cdot (\underline{B} \cdot \underline{C})$ but $A + \underline{A} = 1$ Out = $A \cdot B \cdot \underline{C} + \underline{B} \cdot \underline{C}$				

Truth Table

Row		Out		
	А	В	С	
1	1	1	1	0
2	1	1	0	1
3	1	0	1	0
4	1	0	0	1
5	0	1	1	0
6	0	1	0	0
7	0	0	1	0
8	0	0	0	1

Distributive property

Simplify equation ** (4:56)

Karnaugh Maps

Truth Table

Row	А	В	С	D	Out
1	1	1	1	1	0
2	1	1	1	0	0
3	1	1	0	1	1
4	1	1	0	0	0
5	1	0	1	1	0
6	1	0	1	0	1
7	1	0	0	1	1
8	1	0	0	0	0
9	0	1	1	1	0
10	0	1	1	0	0
11	0	1	0	1	0
12	0	1	0	0	0
13	0	0	1	1	0
14	0	0	1	0	0
15	0	0	0	1	0
16	0	0	0	0	1

Karnaugh Maps (K-maps) are graphical solutions that greatly simplify truth tables.

Compress into matrix →

How do we compress the truth table into matrix?

Truth Table

AB	00	01	11	10
CD				
00	1	0	0	0
01	0	0	1	1
11	0	0	0	0
10	0	0	0	1

Iruth lable 20-3				
	Inut	ก เวเ	าเอ	ハーマ
	nuu	i iai		20-3

Karnaugh Map - Example

Row	А	В	С	D	Out	
1	1	1	1	1	0	
2	1	1	1	0	0	
3	1	1	0	1	1	
4	1	1	0	0	0	
5	1	0	1	1	0	
6	1	0	1	0	1	
7	1	0	0	1	1	
8	1	0	0	0	0	
9	0	1	1	1	0	
10	0	1	1	0	0	
11	0	1	0	1	0	
12	0	1	0	0	0	
13	0	0	1	1	0	
14	0	0	1	0	0	
15	0	0	0	1	0	
16	0	0	0	0	1	

AB	00	01	11	10
CD				
00	1	0	0	0
01	0	0	1	1
11	0	0	0	0
10	0	0	0	1

Rules for Karnaugh Map Solutions

RULE-1: Order top/side table axes, vary only one bit when moving to next cell

RULE-2: Group even numbers of "1"s that are adjacent You can wrap around the cylinder, as in AB=10 → CD=00

Truth Table

AB	00	01	11	1 0	00
CD					
00	1	0	0	1	1
01	0	0	0	0	0
11	1	0	0	0	1
10	1	0	1	0	1

Rules for Karnaugh Map Solutions

RULE-1: Order top/side table axes, vary only one bit when moving to next cell

RULE-3: Each group is one miniterm

RULE-4: If input is both "0" and "1" you don't need that input.

RULE-5: You can use a miniterm more than once.

Truth Table

AB	00	01	11	1 0	00
CD					
00	1	0	0	1	1
01	0	0	0	0	0
11	1	0	0	0	1
10	1	0	1	0	1

 In the first column of adjacent of "1"s it does not matter what D is and thus D drops out (<u>A·B</u>·C).

(2) In the top row of ~adjacent of "1"s it does not matter what A is and thus A drops out (<u>B·C·D</u>).

 $Out = (\underline{A} \cdot \underline{B} \cdot \underline{C}) + (\underline{B} \cdot \underline{C} \cdot \underline{D}) + (A \cdot B \cdot \underline{C} \cdot \underline{D}) \quad 3 \text{ terms}$

Karnaugh Map Tutorial 4 Variable (K-map) (7:54)

Problem 20-1, solve for Y

Row	А	В	С	Y
1	1	1	1	0
2	1	1	0	1
3	1	0	1	1
4	1	0	0	0
5	0	1	1	0
6	0	1	0	0
7	0	0	1	1
8	0	0	0	1

Truth Table

AB	00	01	11	10
С				
0	1	0	1	0
1	1	0	0	1

 \bigcirc

In first **column** of adjacent "1" it does not matter what **C** is, so C drops out. (<u>A · B</u>)

In second **row** of ~adjacent "1" wrapped around, it does not matter what **A** is, so A drops out. (<u>B</u>·C)

 $Out = (\underline{A} \cdot \underline{B}) + (\underline{B} \cdot \underline{C}) + (A \cdot B \cdot \underline{C})$

Problem 20-1, solve for "f" segment

ABCD₂=0000, 0100, 0101, 0110...

light up the "f" segment

Digit	А	В	С	D	"f"
0	0	0	0	0	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
8	1	0	0	0	1
9	1	0	0	1	1

Truth Table for the "f" segment

AB	00	01	11	10
CD				
00	1	1	0	1
01	0	1	0	1
11	0	0	0	0
10	0	1	0	0

 $Out = (\underline{A} \cdot \underline{C} \cdot \underline{D}) + (\underline{A} \cdot \underline{B} \cdot \underline{C}) + (\underline{A} \cdot \underline{B} \cdot \underline{C}) + (\underline{A} \cdot \underline{B} \cdot \underline{D})$

Problem 20-3, solve for AB < CD

# 10	# ₂	AB	CD
0	0000	00	00
1	0001	01	01
3	0011	11	11
2	0010	10	10

Truth Table for AB<CD

AB	00	01	11	10
CD				
00	0	0	0	0
01	1	0	0	0
11	1	1	0	1
10	1	1	0	0

Block of 4 "1"s It does not matter what **B** and **D** are so B and D drop out = (<u>A</u>·C)

Combine 2 top "1"s in first column = $(\underline{A} \cdot \underline{B} \cdot D)$

Combine 2 "1"s in third row = ($\underline{B} \cdot C \cdot D$)

 $Out = (\underline{A} \cdot \underline{C}) + (\underline{A} \cdot \underline{B} \cdot \underline{D}) + (\underline{B} \cdot \underline{C} \cdot \underline{D})$

Lab-8a, Digital Circuits

- Test digital logic gates using inputs of 0 or +5 V.
 Determine output using LED and current-limiting resistor.
- II. Measure the truth table of a various gate.Construct an XOR gate using a 4-gate 7400 NAND chips.
- III. Design and construct a 4-bit decoder

Lab-8a, 4-bit Decoder

Design a 4-bit (ABCD) decoder circuit that lights an LED when the inputs correspond to the decimal numbers 3, 9 and 11.

#	Α	В	С	D	Out	
0	0	0	0	0	0	
1	0	0	0	1	0	
2	0	0	1	0	0	
3	0	0	1	1	1	
4						

Truth Table for 3

Truth Table for 3.9.11

AB	00	01	11	10
CD				
00				
01				
11	1			
10				

