Course Hints Good practices

- Review the slides before class
 - become familiar with material
- Review the lecture after class
 what don't you understand
- Briefly Study the lab instructions
 - what components will you use
 - what instruments will you use
 - what measurements will you make

Calendar of Topics Covered Physics PHYS 2371/2372, Electronics for Scientists Don Heiman and Hari Kumarakuru Northeastern University, Fall 2020

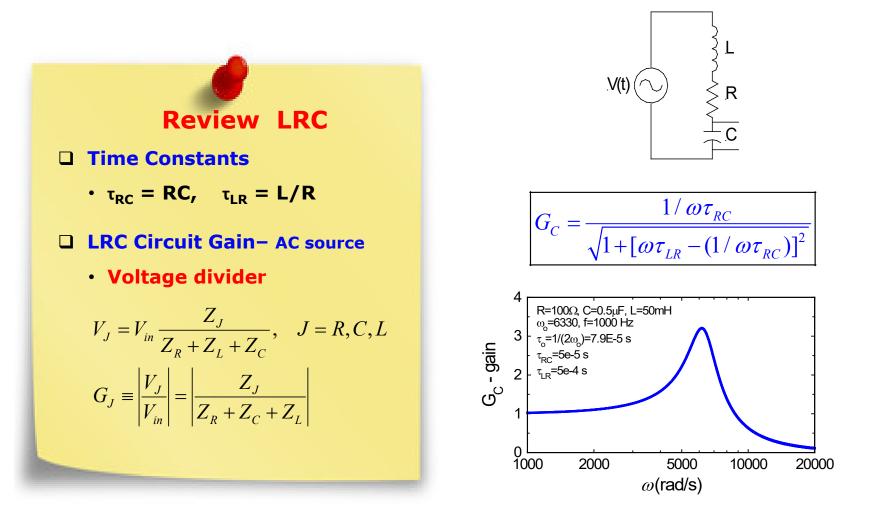
Also see Course Description and Syllabus

This is a schedule of the topics covered, but it may be modified occasionally (09/24/2020).

Week #	Lectures	Weekly Topics (Chs.)	Homework (Ch-Problem)	Lab Experiments (always look for latest version)
III Sept 23-25	Wed Lecture <u>Time-Dependent AC</u> <u>Circuits</u>	The Oscilloscope (Ch-17) AC and Elements of Circuits (Ch-7/8) Circuit Analysis (LRC) (Ch-9/12) Resonance (Ch-10)	<u>7-all, 8-3</u> <u>12-all</u>	<u>Worksheet-3,</u> <u>Worksheet-3 video</u> <u>RC data xls</u> <i>Time-Dependent AC Circuits</i> (R, RC, LRC)
IV Sept 30-Oct 2	Wed Lecture Semiconductor Devices	Solid State Devices (Ch-40) <i>p-n</i> Junction Diodes (Ch-41) Transistors/Circuits (Ch-42-45)	<u>HW Handout</u>	<u>Worksheet-4,</u> Say Hello (and Goodbye) to the Transistor
V Oct 7-9	Wed Lecture Operational <u>Amplifiers</u>	Op-Amp Basics (Ch-28, 31) Basic Op-Amp Circuits (Ch-29)	<u>28-1/3/4, 29-</u> <u>1/2/3/4</u>	<u>Lab-5, <i>Op-Amps</i></u>
VI Oct 14	Wednesday Study for EXAM-1	Study for EXAM-1 Basics, AC Circuits, Semiconductors, Op-amps		No Lab
VII Oct 19, 21-23 MON/WED	MONDAY EXAM-I	Wed Lecture <u>Magnetoelectronics</u> Magnetic induction/flux Transformers (Ch-11)	<u>11-all</u>	Lab-6, Build a Magnetometer

TODAY

- Semiconductors
 Si, GaAs
 doping
 donors/acceptors
 mobility
- *p-n* Junction
 depletion region
 energy bandgap
- Bipolar Junction Transistor
 current amplification
 npn/pnp
 common emitter
 emitter follower
- □ Preview Lab-4, Transistor


R, C, L - Voltages/Currents

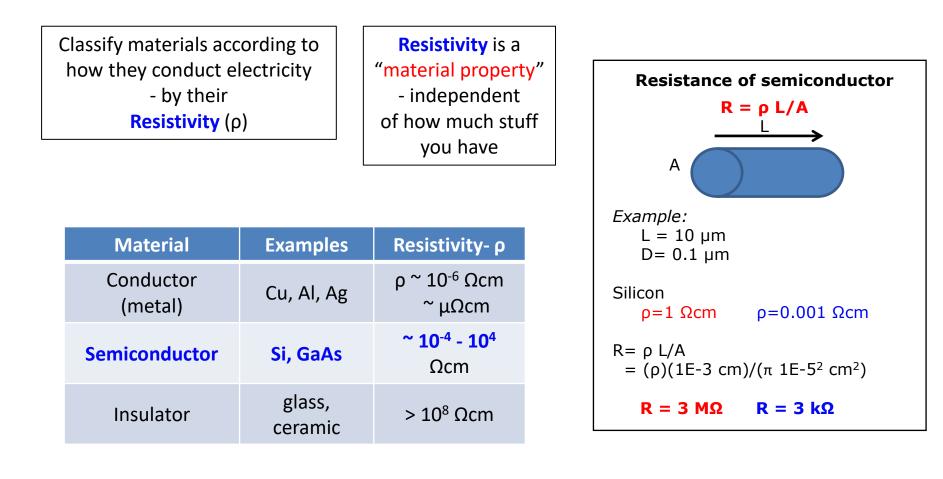
	R	С	L
I(t) =	V(t)/R	C <i>d</i> V(t)/ <i>d</i> t	-1/L ∫V(t) <i>dt</i>
V(<i>t</i>) =	I(t) R	1/C ∫I(t) <i>dt</i>	L dI(t)/dt
Z =	R	- <i>i</i> /ωC	<i>i</i> ωL
X =	R	1/ωC	ωL
Φ =	0	V lags I by 90° Φ = -π/2	V leads I by 90° Φ = + π/2

- C and L only change the flow of current
- C and L do not dissipate energy, they store energy
- C stores energy in electric field $\epsilon_0 E^2/2$
- L stores energy in magnetic field $B^2/2\mu_o$

X - Reactance Resists changes

- C electric field resists extra charge
- L magnetic field resists extra current

The resonance maximum in $G_c(\omega)$ occurs at ω_o when the denominator in the squared term is zero. $\omega_o = 1/\sqrt{LC}$

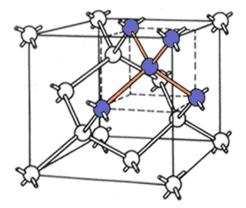

- What is a Semiconductor
- What is a *pn*-junction
- How does a diode work
- How does a transistor work
- > What is an **amplifier** circuit

Wolfgang Ernst Pauli Nobel Prize in Physics – 1945

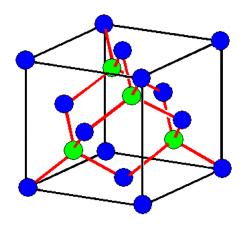
Pauli Exclusion Principle No two electrons can occupy the same quantum state.

"One should not work on semiconductors, that is a filthy mess; who knows if they really exist." 1931

Materials and Resistivity



Types of Semiconductors


Periodic Table of Semiconductors

II	III	IV	V	VI
	В	С	Ν	0
	ΑΙ	Si	Ρ	S
Zn	Ga	Ge	As	Se
Cd	In	Sn	Sb	Те
Hg				

Si	IV - all of our electronics
GaAs	III-V - high frequency
AlGaAs	III-V - red LED
InGaN	III-V - blue LED
HgTe	II-VI - IR detector

Silicon "diamond structure" but not carbon

GaAs "zincblende structure"

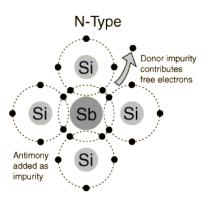
Questions?

Group IV semiconductors

Group IV semiconductors Si, Ge

- have 4 valence electrons
- tetrahedral coordination
- pairs of bonding (valence) electrons

Concept of Doping


Doping allows you to add mobile charges

Doping - Add a small concentration of another type of atom (impurity)

Dope Si with an Sb atom Substitute a Si atom with Sb

Replace the 4 valence electrons of Si (group-IV) with the 5 valence electrons of Sb (group-V)

II	III	IV	V	VI
	В	С	Ν	0
	ΑΙ	Si	Ρ	S
Zn	Ga	Ge	As	Se
Cd	In	Sn	Sb	Те
Hg				

Concept of a Hole

positive charge
 missing electron

Holes are Mobile (Itinerant)

Analogy to bubbles

A hole in a liquid is a bubble or simply missing liquid.

The bubble (hole) moves as liquid moves into the area that is left behind.

The basis for all semiconductor devices

relies on the ability to make them

with an excess electrons or holes.

Doping Electrons or Holes

Semiconductors are doped with impurities (other atoms) to generate a density or concentration of free carriers (electrons or holes).

Doping in Silicon

n-type, donor, add group-V (P, As,Sb)
 has one extra electron

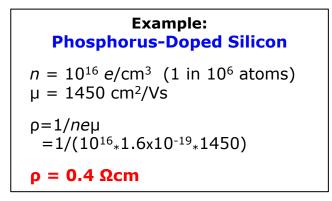
- *p*-type, acceptor, add group-III (B,AI,Ga,In)
 has one less electron
 - leaves a hole behind

Note that doping leaves the semiconductor **neutral**

n-doping = electron plus positively charged atom *p*-doping = hole plus a negatively charged atom (1) Donor Impurity
 Donates mobile electrons,
 n-type conductivity

(2) Acceptor Impurity Donates mobile holes, *p*-type conductivity

II	III	IV	V	VI
	В	С	Ν	0
	AI	Si	Ρ	S
Zn	Ga	Ge	As	Se
Cd	In	Sn	Sb	Те
Hg				

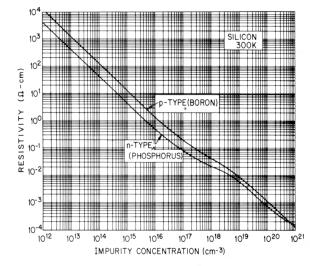
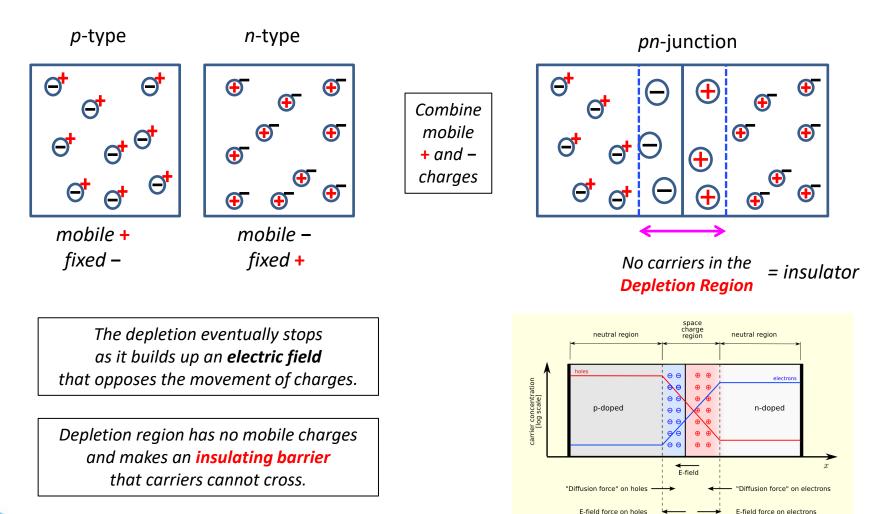

Use doping to make pn-junction diode or transistors and FETs

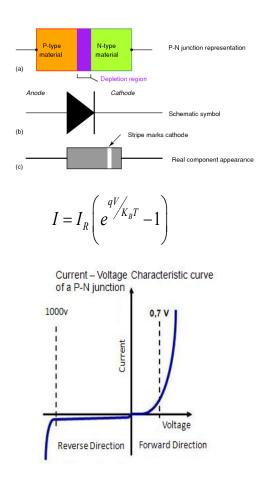
Questions?

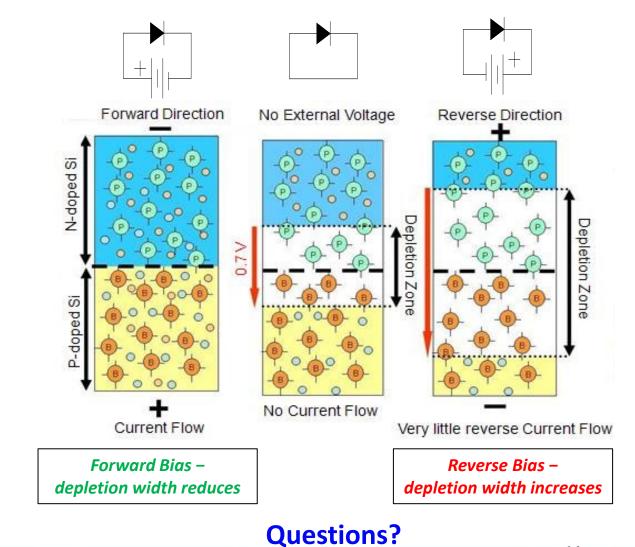
Semiconductor Properties

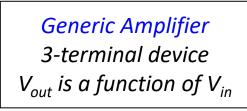
Resistivity – ρ Conductivity – $\sigma = 1/\rho$ Carrier Density – n or pMobility – μ

Property	Designation	Units
Resistivity	ρ	Ωcm
Conductivity	σ = 1/ρ	1/Ωcm
Carrier (electron, hole)	n or p	#/cm ³
Mobility	μ	cm ² /Vs
relations	σ = <i>ne</i> μ, ρ=1/ <i>ne</i> μ	

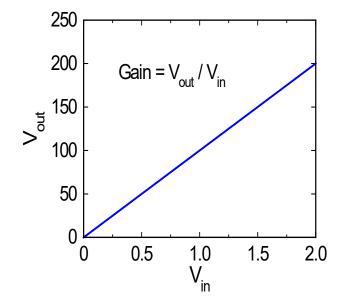




Fig. 21 Resistivity versus impurity concentration for silicon at 300 K. (After Beadle, Plummer, and Tsai, Ref. 38.)


pn-junction (semiconductor diode)


Questions?

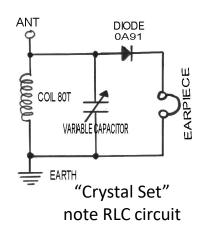
Remarkable Diode Action



Amplifier (transistor)

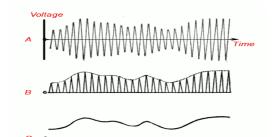
Invention of Transistor

The transistor was invented at Bell Laboratory in 1947 by physicists John Bardeen, Walter Brattain, and William Shockley


They probably built a <u>Crystal Set</u> radio receiver in their youth. A crystal set is a radio receiver made using a piece of <u>gemanium</u> mineral.

Their **transistor** was very similar to the germanium *pn*-diode crystal set.

It is ironic that their Nobel Prize winning discovery was probably influenced by their childhood experience.


First Transistor

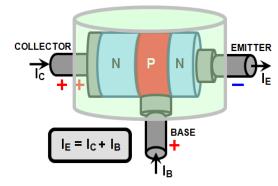
Germanium Diode

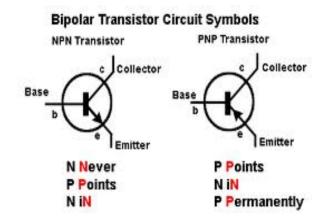
Rectify AM radio signal 540 to 1600 kHz, then average voltage for audio frequencies

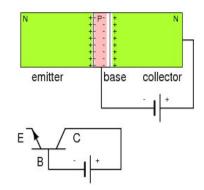
Transistor Videos

Invention of Transistor, 5 min <u>http://www.youtube.com/watch?v=RdYHljZi7ys&feature=related</u>

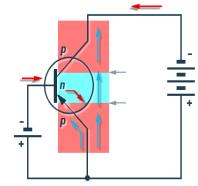
> AT&T, Invention of Transistor, 11 min http://www.youtube.com/watch?v=TIsr5R5zuOU


Transistor Introduction, 15 min (later) <u>http://www.youtube.com/watch?v=4QkRI1Ue208&feature=related</u>




Bipolar Junction Transistor

NPN BJT TRANSISTOR



Voltage on the base, narrows or widens the depletion region, allowing more or less current to flow.

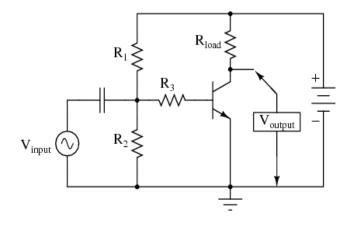
Small change in the base current, makes charge change in the collector current.

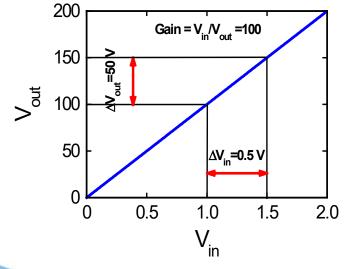
Transistor Basics

(not in text)

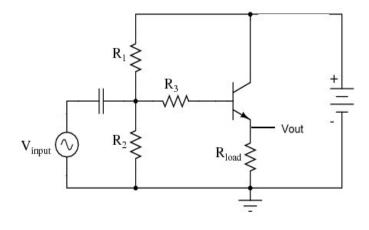
(1) Don't think of a transistor as a current amplifier

 – in practice, think of it as a device where
 the base voltage controls the transistor resistance.


(2) In circuits

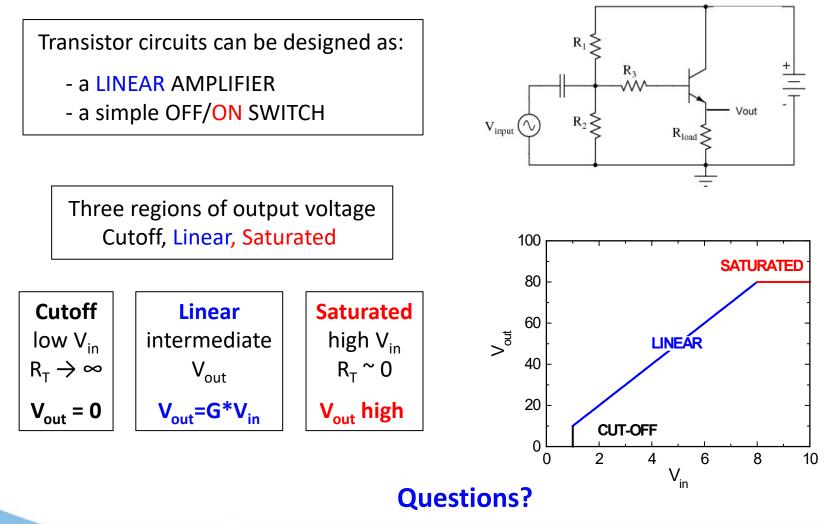

 consider a transistor as a variable resistor in a Voltage Divider.

What is a transistor? How does a transistor work? Part 2 0-1:05, 4:15-7:08 http://www.youtube.com/watch?v=4QkRI1Ue208&feature=related


Transistor Circuits

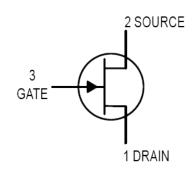
Common Emitter

Emitter Follower


Linear Amplifier

A small modulated input voltage generates a large modulated output voltage.

It replicates the time-varying input voltage, but increases it.


Emitter Follower Circuit http://www.falstad.com/circuit/e-follower.html

Transistor Circuits

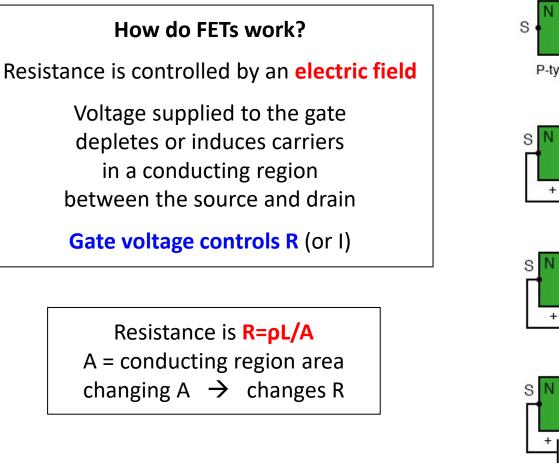
Field Effect Transistor (FET)

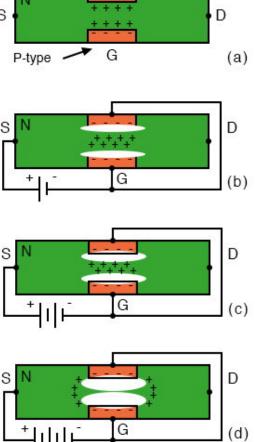
Since transistors are used as resistors in a voltage divider, why not use a resistive device like an FET?

The basic principle of the field-effect transistor was first patented by Julius Edgar Lilienfeld in 1925.

(predates the transistor by 32 years)

FET is a simple 3-terminal device (gate, source, drain)

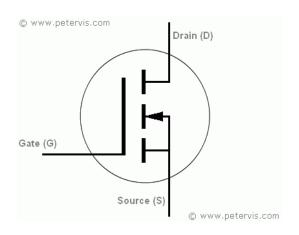

The voltage on the gate controls the source-to-drain resistance

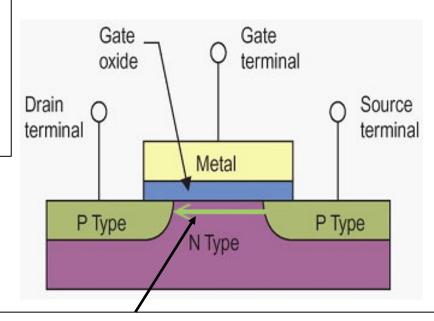

FET Advantages

- very high gate resistance (no gate current)
- have no threshold like a transistor
- are simply variable resistors
- very small size (high area density)

Field Effect Transistor (FET)

Questions?


23

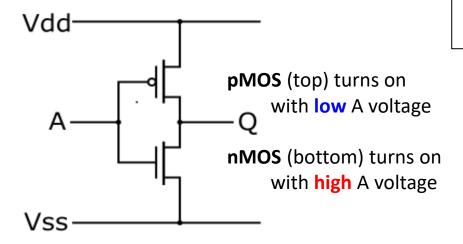

MOSFET

MOSFET

Metal Oxide Semiconductor FET

- Gate is **isolated** by an oxide barrier
- Most common transistor
- Better for IC (integrated circuits)

Electric field from the gate electrode creates a conducting **p-type inversion layer** in the n-type material that connects the p-type regions.


CMOS

CMOS

Complementary MOSFET

- Lower power
- Most VLSI

(very large scale integration)

ADVANTAGE of CMOS in voltage divider One FET of the pair is always off

The series combination draws significant power only momentarily during switching between on and off states (80% of power in a chip). Consequently, CMOS devices have **much less waste** heat as other forms of logic, which normally have some standing current even when not changing state.

> **CMOS** is the technology for most integrated circuits. CMOS technology is used in microprocessors, microcontrollers, static RAM, and other digital logic circuits.

Frank Wanlass patented CMOS in 1963.

Questions?

Lab Experiment – 4

Say Hello (and Goodbye) to the Transistor

Lab Hints

Good practices for lab experiments

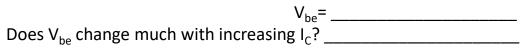
- > **Draw** circuit diagram in notebook
- Arrange protoboard to look like the diagram
 make it look organized
- Limit the number of wires
- PLOT, plot, plot data
 - plot points AS you take data
- > ASK, ask the TA
 - "Does this plot look right?"

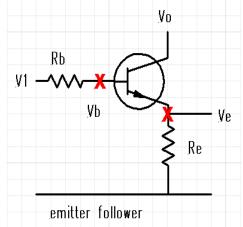
Worksheet-4, Say Hello (and Goodbye) to the Transistor Name:_____

Physics PHYS 2371/2372, Electronics for Scientists Don Heiman and Hari Kumarakuru, Northeastern University

II. Emitter-Follower Transistor Circuit

.......


Here you will construct an "emitter follower" circuit to investigate the *linear regime* of a transistor. Set up the emitter follower circuit shown in the first figure on the next page. Use $R_e = 100 \Omega$, $R_b = 1 k\Omega$, and set $V_o = +5 V$.


1. Vary V₁ from 0 to 10 V while measuring V_b (base to ground) and V_e (emitter to ground) with DVMs, and use the oscilloscope to measure the DC voltage of V₁. Put V₁, V_b, V_e, values in a *table* and include columns for V_{be}, I_c (=I_e), I_b, and $\beta = I_c/I_b$.

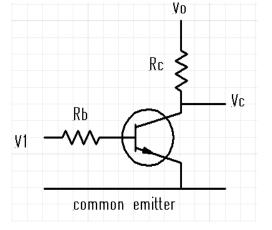
2. Plot V_e as a function of V_1 from 0 to 10 V and fill in data points to get a smooth curve.

In the plot, identify the 3 regions: cut-off, linear, and saturation. Show plot to the TA.

 Plot I_c as a function of V_{be}. Compare to expected result and discuss. What is the turn-on voltage?

III. Common-Emitter Current Amplifier

.


Here you will construct a "common emitter" current amplifier. This circuit does not operate in the linear regime as in the previous circuit, but operates as an on/off switch. For example, it could be used to amplify low current TTL pulses (0 V off and +5 V on). Note that a TTL pulse must be greater than only +1.2 V to be considered "on."

Set up the common emitter circuit shown in the second figure. Use $R_c = 100 \Omega$, $R_b = 1 k\Omega$, and set $V_o = +5 V$.

1. Vary the input V₁ from 0 to a few volts while measuring the output V_c. Tabulate and plot V_c as a function of V₁. Show the plot to the TA.

2. Compute the effective resistance of the transistor (R_T) at 3 values of V_C, where V_C ~ 0 V, V_C ~ 1 to 4 V, and V_C ~ 5 V.

 $R_{T}(V_{C}\sim 0) =$; $R_{T}(V_{C}\sim 1-4V) =$; $R_{T}(V_{C}\sim 5V) =$

Course Hints Good practices

- Review the slides before class
 - become familiar with material
- Review the lecture after class
 what don't you understand
- Briefly Study the lab instructions
 - what components will you use
 - what instruments will you use
 - what measurements will you make

окончание