Electronics - PHYS 2371/2

Week \#	Lectures	Weekly Topics (Chs.)	Homework (Ch-Problem)	Lab Experiments (always look for latest version)
$\begin{gathered} \text { III } \\ \text { Sept } 23-25 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Wed Lecture } \\ \text { Time-Dependent AC } \\ \hline \underline{\text { Circuits }} \\ \hline \end{array}$	The Oscilloscope (Ch-17) AC and Elements of Circuits (Ch-7/8) Circuit Analysis (LRC) (Ch-9/12) Resonance (Ch-10)	$\frac{7 \text {-all, } 8-3}{12 \text {-all }}$	Worksheet-3, Worksheet-3 video RC data xls Time-Dependent AC Circuits (R, RC, LRC)
$\begin{gathered} \text { IV } \\ \text { Sept 30-Oct } 2 \end{gathered}$	Wed Lecture Semiconductor Devices	Solid State Devices (Ch-40) $p-n$ Junction Diodes (Ch-41) Transistors/Circuits (Ch-42-45)	HW Handout	Worksheet-4, Say Hello (and Goodbye) to the Transistor
$\begin{gathered} V \\ \text { Oct 7-9 } \end{gathered}$	Wed Lecture Operational Amplifiers	Op-Amp Basics (Ch-28, 31) Basic Op-Amp Circuits (Ch-29)	$\frac{28-1 / 3 / 4,29-}{1 / 2 / 3 / 4}$	Lab-5, Op-Amps
$\begin{gathered} \text { VI } \\ \text { Oct } 14 \end{gathered}$	Wednesday Study for EXAM-1	Study for EXAM-1 Basics, AC Circuits, Semiconductors, Op-amps		No Lab
$\begin{aligned} & \text { VII } \\ & \text { Oct } 19,21-23 \\ & \text { MON/WED } \end{aligned}$	MONDAY EXAM-I	Wed Lecture \quad Magnetoelectronics Magnetic induction/flux Transformers (Ch-11)	11-all	Lab-6, Build a Magnetometer
$\begin{gathered} \text { VIII } \\ \text { Oct } 28-30 \end{gathered}$	Wed Lecture Optoelectronics	Photodiode, LED, laser	none	Lab-7, Optoelectronics (coupled LED-photodiode)

Due Wednesday, Sept. 25
$>$ Week-III HW (Chs. 7,8,12)
> Worksheet-3 on AC

TODAY

\square Quick Review-Basics
\square Alternating Current, Ch-7

- RMS
\square Elements of AC Circuits, Ch-8
- resistor, capacitor, inductors(L)
- impedance (Z), reactance (X)
(video break)
\square AC Circuits, Ch-9
- Gain in RC and LRC circuits
- Frequency dependence
\square Step Function Analysis, Ch-12
- RC circuit
- LRC Resonance, Ch-10
- add inductor (L)

Lab-3, Time-varying AC Voltages

- oscilloscope, RC and LRC circuits

Electronics - PHYS 2371/2

Gustav Robert Kirchhoff (1824-1887)

He contributed to the fundamental understanding of electrical circuits.

Kirchhoff formulated his circuit laws, which are
now ubiquitous in electrical engineering, in
1845 , while still a student. He completed this
study as a seminar exercise; it later became his
doctoral dissertation. In 1857 he calculated that
an electric signal in a resistanceless wire travels
Kirchhoff formulated his circuit laws, which are
now ubiquitous in electrical engineering, in
1845 , while still a student. He completed this
study as a seminar exercise; it later became his
doctoral dissertation. In 1857 he calculated that
an electric signal in a resistanceless wire travels
Kirchhoff formulated his circuit laws, which are
now ubiquitous in electrical engineering, in
1845 , while still a student. He completed this
study as a seminar exercise; it later became his
doctoral dissertation. In 1857 he calculated that
an electric signal in a resistanceless wire travels
Kirchhoff formulated his circuit laws, which are
now ubiquitous in electrical engineering, in
1845 , while still a student. He completed this
study as a seminar exercise; it later became his
doctoral dissertation. In 1857 he calculated that
an electric signal in a resistanceless wire travels
Kirchhoff formulated his circuit laws, which are
now ubiquitous in electrical engineering, in
1845, while still a student. He completed this
study as a seminar exercise; it later became his
doctoral dissertation. In 1857 he calculated that
an electric signal in a resistanceless wire travels
Kirchhoff formulated his circuit laws, which are
now ubiquitous in electrical engineering, in
1845, while still a student. He completed this
study as a seminar exercise; it later became his
doctoral dissertation. In 1857 he calculated that
an electric signal in a resistanceless wire travels along the wire at the speed of light.

He proposed his law of thermal radiation in 1859, and coined the term "black body" radiation in 1862.

$$
\mathrm{V}_{2}=\mathrm{V}_{\text {in }} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

Basics

> Kirchhoff's Basic Circuit Laws

- KCL - Kirchhoff's Current Law
$\Sigma \mathrm{I}=\mathbf{0}$ at node - conservation of charge
- KVL - Kirchhoff's Voltage Law
$\Sigma \mathbf{V}=\mathbf{0}$ around loop - conservative field
> Adding components
- $R_{\text {series }}=\Sigma R_{i}, \mathbf{1} / R_{\text {parallel }}=\Sigma \mathbf{\Sigma} / \mathbf{R}_{\mathbf{i}}$
- $\mathrm{C}_{\text {parallel }}=\boldsymbol{\Sigma} \mathrm{C}_{\mathrm{i}}, \mathbf{1} / \mathrm{C}_{\text {series }}=\boldsymbol{\Sigma} \mathbf{1} / \mathrm{C}_{\mathbf{i}}$
> Voltage Divider

R1

V_{2}

R2

Electronics - PHYS 2371/2

AC - Alternating Current (Ch-7)

Sine wave $V(t)=V_{p} \sin (\omega t+\phi)$
ω frequency, units---radians/s
ϕ phase, units---radians

$$
\begin{array}{ll}
f=\omega / 2 \pi & \text { frequency, units }-\mathrm{Hz} \text { or cycles/s } \\
\mathrm{T}=1 / f=2 \pi / \omega & \text { period, units }-\mathrm{s} \\
\mathrm{~V}_{\mathrm{pp}}=2 \mathrm{~V}_{\mathrm{p}} & \text { peak-to-peak voltage }
\end{array}
$$

How do you measure the power for AC?

For DC, Power $=I_{D C} \times V_{D C}$ both I and V are constant

With AC, I(t) and V(t)

RMS - root mean square

Averaging for AC signals of any waveform
$\left\langle\mathrm{V}_{\mathrm{p}}>=\mathbf{0}\right.$ for sine wave

$$
\mathrm{V}_{\mathrm{RMS}}=\sqrt{\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{~V}^{2}(\mathrm{t}) \mathrm{dt}}
$$

RMS characterizes the average, independent of the waveform
Power $P=V_{\text {RMs }}{ }^{2} / R$

For sine wave $\quad \mathbf{V}_{\text {RMS }}=\mathbf{V}_{\mathrm{p}} / \mathbf{V} \mathbf{2}=\mathbf{0 . 7 0 7} \mathrm{V}_{\mathrm{p}}$
For square wave $\quad \mathbf{V}_{\text {RMS }}=\mathbf{V}_{\mathbf{p}}$
For pulses
$\mathrm{V}_{\mathrm{RMS}}<\mathrm{V}_{\mathrm{p}}$

Electronics - PHYS 2371/2

Prob. 7-1 wall plug

$$
\begin{aligned}
& f=60 \mathrm{~Hz} \\
& \mathrm{~V}_{\mathrm{RMS}}=115-120 \mathrm{~V}
\end{aligned}
$$

Period

$$
\mathrm{T}=1 / 60=16.7 \mathrm{~ms}
$$

Peak voltage

$$
\begin{aligned}
V_{p} & =V 2 V_{\text {RMS }} \\
& \approx 170 \mathrm{~V}
\end{aligned}
$$

Questions?

Simple AC, RMS

Electronics - PHYS 2371/2

Basic Elements of AC Circuits

Carbon Composition Resistor

R - resistor

carbon, carbon film, metal film ohm (Ω)

C - capacitor

metal + ceramic or plastic film farad (F)

L - inductor coil of insulated wire henry (H)

Electronics - PHYS 2371/2

Inductor

An inductor,
as an electrical component, is a coil of wire.

When a current flows through it, energy is stored temporarily in a magnetic field in the coil.

How does it work in an AC Circuit?

It resists changes in current passing through it.
When the current flowing through an inductor changes, the time-varying magnetic field induces a voltage in the conductor according to Faraday's law of induction, which opposes the change in the current that created it. (Wikipedia)

Electronics - PHYS 2371/2

Inductor in an AC Circuit

- When the current changes
- it creates a changing magnetic field
- this creates a reverse voltage
- thus opposing the original changing current

An inductor appears to have inertia, as it tries to keep the status quo, or fight any changes in the current.

Questions?

Electronics - PHYS 2371/2

R, C, L in an AC Circuit
 \rightarrow Phase Shift between $\mathrm{V}(\mathrm{t})$ and $\mathrm{I}(\mathrm{t})$

Time dependence of $V(t)$ and $I(t)$
$\mathrm{V}(\mathrm{t})$ and $\mathrm{I}(\mathrm{t})$ may not be "in phase"

$$
I=I_{P} \sin (\omega t)
$$

Resistor

Capacitor

Electronics - PHYS 2371/2

What are I-V relationships

 for any time-dependent voltages$$
\begin{array}{llll}
R & V=I R & I=V / R & (\Omega=\text { volt } / \text { amp }) \\
C & V=\frac{1}{C} \int I d t & I=C \frac{d V}{d t} & (\text { farad }=\text { coulomb } / \text { volt }) \\
L & V=L \frac{d I}{d t} & I=\frac{1}{L} \int V d t & \left(\text { henry }=\frac{\text { volt }-s}{a m p}\right)
\end{array}
$$

	\mathbf{R}	\mathbf{C}	\mathbf{L}
$\mathrm{I}(t)=$	$\mathrm{V}(\mathrm{t}) / \mathrm{R}$	$\mathrm{C} d \mathrm{~V}(\mathrm{t}) / d \mathrm{t}$	$-1 / \mathrm{L} \rho \mathrm{V}(\mathrm{t}) d t$
$\mathbf{V}(t)=$	$\mathrm{I}(\mathrm{t}) \mathrm{R}$	$1 / \mathrm{C} \int \mathrm{I}(\mathrm{t}) d t$	$\mathrm{~L} d \mathrm{I}(\mathrm{t}) / d \mathrm{t}$
$\mathbf{Z}=$	\mathbf{R}	$\boldsymbol{- i / \omega \mathbf { C }}$	$\boldsymbol{i} \omega \mathbf{L}$
$\mathbf{X}=\|\mathrm{Z}\|=$	R	$1 / \omega \mathrm{C}$	$\omega \mathrm{L}$
\boldsymbol{P}	0	V lags I by 90°	V leads I by 90°

Electronics - PHYS 2371/2

Properties of R, C, L in an AC Circuit

- \mathbf{R} dissipates energy in the form of heat
- C and L only change the flow of current
- C and L do not dissipate energy, they store energy
- C stores energy in an electric field
- L stores energy in the form of a magnetic field

C and L only "act" like resistances (reactance)
In order to use an "effective resistance" for C and L , we use the concept of Impedance and Reactance.

Electronics - PHYS 2371/2

Impedance and Reactance

Similar to resistance - but depends on frequency ω

Reactance $X=|Z|$
 Magnitude of Z

$X=$	R	$1 / \omega C$	ωL

\square Example - RC Circuit Impedance

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{R}} & =\mathrm{X}_{\mathrm{R}}=\mathrm{R}=1.0 \mathrm{k} \Omega \\
\mathrm{Z}_{\mathrm{C}} & =-i \mathrm{X}_{\mathrm{C}}=-i / \omega \mathrm{C} \\
& =-i /\left(2 \pi^{*} 10^{3} \mathrm{~s}^{-1 *} 10^{-7} \mathrm{~F}\right) \\
& =-i 1600 \Omega \\
\mathrm{Z} & =(1.0-1.6 i) \mathrm{k} \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X}=\mathrm{ZZ}^{*}=\left[(1.0-1.6 i) \mathrm{k} \Omega^{*}(1.0+1.6 i) \mathrm{k} \Omega\right]^{1 / 2} \\
&=\left[(1.0 \mathrm{k} \Omega)^{2}+(1.6 \mathrm{k} \Omega)^{2}\right]^{1 / 2} \\
& \mathbf{X}=\mathbf{1 . 9} \mathbf{k} \Omega \quad \mathbf{C} \text { conducts more at higher } \boldsymbol{\omega}
\end{aligned}
$$

Electronics - PHYS 2371/2

Combining Impedances

Simple way to derive series/parallel formulas

$$
\begin{aligned}
& \text { Series components } \\
& Z_{\mathrm{T}}=\Sigma \mathrm{Z}_{i}=\mathrm{Z}_{1}+\mathrm{Z}_{2} \cdots
\end{aligned}
$$

$$
\begin{aligned}
& \text { Parallel components } \\
& 1 / Z_{\mathrm{T}}=\Sigma 1 / \mathrm{Z}_{i}=1 / \mathrm{Z}_{1}+1 / Z_{2} \cdots .
\end{aligned}
$$

$$
\begin{aligned}
& Z_{R}=R \sim R \\
& Z_{C}=-i / \omega C \sim 1 / C
\end{aligned}
$$

Series components

$$
\begin{array}{ll}
\mathbf{R}_{\mathrm{T}}=\sum \mathrm{R}_{i}=\mathbf{R}_{1}+\mathbf{R}_{\mathbf{2}} \cdots & 1 / \mathbf{R}_{\mathrm{T}}=\Sigma 1 / \mathrm{R}_{i}=1 / \mathbf{R}_{1}+\mathbf{1} / \mathbf{R}_{2} \cdots \\
1 / \mathrm{C}_{\mathrm{T}}=\Sigma 1 / \mathrm{C}_{i}=1 / \mathrm{C}_{1}+1 / \mathrm{C}_{2} \cdots . & \mathrm{C}_{\mathrm{T}}=\Sigma \mathrm{C}_{i}=\mathrm{C}_{1}+\mathrm{C}_{2} \cdots
\end{array}
$$

Formulas are derived without Kirchhoff's laws Questions?

Electronics - PHYS 2371/2

Video

Tesla 8:12 - (17:57)

Electronics - PHYS 2371/2

Tesla Video

Why is AC better than DC for power applications?

For DC, electrons DO NOT

have to travel a long distance. The video was WRONG.

POWER GRID	Voltage
GigaW Power plant	$138-500$ kVAC
Large substation	$26 / 69$ kVAC
Small substation	13,800 VAC
Street	4,000 VAC
House	$120 / 240$ VAC

AC allows for lower transmission losses,

 by increasing voltage and reducing current.Using a few assumptions, the power loss in transmission through power lines with resistance R is $\Delta \mathbf{P}=\mathbf{I}^{\mathbf{2}} \mathbf{R}$. Thus, the power loss is proportional to $\sim \mathbf{I}^{\mathbf{2}}$.

You can keep the delivered power ($\mathbf{P}=\mathbf{I V}$) constant by simply increasing the voltage by the factor η, and reducing the current by the same factor of η.

So increasing the voltage by a factor of 2 and decreasing the current by a factor of 2 , keeps the delivered power constant, but reduces the power loss in the power lines by a factor of 4.

Power grids use voltages up to nearly 10^{6} volts.
This effect is only useful with AC, as it is very easy to step up and down the voltages with passive electrical transformers.

Questions?

Electronics - PHYS 2371/2

Step function analysis of RC circuit

KVL: $\quad V_{O}-I R-V_{C}=0$

$$
V_{O}-I(t) R-\frac{Q(t)}{C}=0
$$

$I=d Q / d t$
$V_{O}-R \frac{d Q(t)}{d t}-\frac{Q(t)}{C}=0$
Guess the solution: $\quad Q=A+B e^{\alpha t}$

$$
\begin{array}{r}
d Q / d t=\alpha B e^{\alpha t} \\
{\left[V_{O}-\frac{A}{C}\right]-B e^{\alpha t}\left[\alpha R-\frac{1}{C}\right]=0}
\end{array}
$$

$$
A=V_{O} C \quad \text { and } \quad \alpha=-\frac{1}{R C}=-\frac{1}{\tau}
$$

$$
Q=C V_{O}+B e^{-\frac{t}{\tau}}
$$

$$
V_{C}(t)=Q / C=V_{O} e^{-\frac{t}{\tau}} \quad \text { for discharge }
$$

$$
\tau=\mathrm{RC}
$$

LRC Circuit Analysis (Ch-9)

General Series LRC Circuit
Resonant Circuit

Input $V_{\text {in }}(\mathrm{t})=\mathrm{V}_{\mathrm{P}} \sin (\omega \mathrm{t})$

Compute Gain $\left.\quad G \equiv\left|\frac{V_{\text {out }}}{V_{\text {in }}}\right| \right\rvert\,$

Electronics - PHYS 2371/2

LRC Circuit Analysis (Ch-9)
Gain on R and C in LRC Circuit

Compute voltages V_{R} and V_{C}

 using Impedances Z$$
\mathrm{G}_{\mathrm{c}}=\left|\mathrm{V}_{\mathrm{c}} / \mathrm{V}_{\mathrm{in}}\right|
$$

Electronics - PHYS 2371/2

LRC Gain G(f) - Voltage Divider

$$
V_{J}=V_{\text {in }} \frac{Z_{J}}{Z_{R}+Z_{L}+Z_{C}}, \quad J=R, C, L
$$

$Z_{R}=R, \quad Z_{C}=-i / \omega C, \quad Z_{L}=i \omega L$
$G_{J} \equiv\left|V_{J} / V_{V_{i n}}\right|=\left|\frac{Z_{J}}{Z_{R}+Z_{C}+Z_{L}}\right|$
$G_{C}=\sqrt{\left[\frac{-i / \omega C}{(R-i / \omega C+i \omega L)}\right]\left[\frac{i / \omega C}{(R+i / \omega C-i \omega L)}\right]}$
$G_{C}=\frac{1 / \omega \tau_{R C}}{\sqrt{1+\left(1 / \omega \tau_{R C}-\omega \tau_{L R}\right)^{2}}}, \quad \tau_{R C}=R C, \tau_{L R}=L / \mathrm{R}$

Electronics - PHYS 2371/2

LRC Circuit Gains G(ω)

Circuit	Gain	Phase
J	$\mathrm{G}_{\mathrm{J}}, \tau_{\mathrm{RC}}=\mathrm{RC}, \tau_{\mathrm{LR}}=\mathrm{L} / \mathrm{R}$	Phase between V_{J} and I
RC	$\mathrm{G}_{\mathrm{R}}=\left(\omega \tau_{\mathrm{RC}}\right) /\left[1+\left(\omega \tau_{\mathrm{RC}}\right)^{2}\right]^{1 / 2}$	$\phi_{\mathrm{R}}=\operatorname{atan}\left(1 / \omega \tau_{\mathrm{RC}}\right)$
RC	$\mathrm{G}_{\mathrm{C}}=\quad 1 /\left[1+\left(\omega \tau_{\mathrm{RC}}\right)^{2}\right]^{1 / 2}$	$\phi_{\mathrm{C}}=\operatorname{atan}\left(-\omega \tau_{\mathrm{RC}}\right)$
RL	$\mathrm{G}_{\mathrm{R}}=\quad 1 /\left[1+\left(\omega \tau_{\mathrm{LR}}\right)^{2}\right]^{1 / 2}$	$\phi_{\mathrm{R}}=\operatorname{atan}\left(-\omega \tau_{L R}\right)$
RL	$\mathrm{G}_{\mathrm{L}}=\left(\omega \tau_{\mathrm{LR}}\right) /\left[1+\left(\omega \tau_{\mathrm{LR}}\right)^{2}\right]^{1 / 2}$	$\phi_{\mathrm{L}}=\operatorname{atan}\left(1 / \omega \tau_{\mathrm{LR}}\right)$
LRC	$\mathrm{G}_{\mathrm{R}}=\quad 1 /\left[1+\left(\omega \tau_{\mathrm{LR}}-1 / \omega \tau_{\mathrm{RC}}\right)^{2}\right]^{1 / 2}$	$\phi_{\mathrm{R}}=\operatorname{atan}\left(1 / \omega \tau_{\mathrm{RC}}-\omega \tau_{\mathrm{LR}}\right)$
LRC	$\mathrm{G}_{\mathrm{C}}=\left(1 / \omega \tau_{\mathrm{RC}}\right) /\left[1+\left(\omega \tau_{\mathrm{LR}}-1 / \omega \tau_{\mathrm{RC}}\right)^{2}\right]^{1 / 2}$	$\phi_{\mathrm{C}}{ }^{*}=\operatorname{atan}\left(1 / \omega \tau_{\mathrm{RC}}-\omega \tau_{\mathrm{LR}}\right)-\pi / 2$
LRC	$\mathrm{G}_{\mathrm{L}}=\left(\omega \tau_{\mathrm{LR}}\right) /\left[1+\left(\omega \tau_{\mathrm{LR}}-1 / \omega \tau_{\mathrm{RC}}\right)^{2}\right]^{1 / 2}$	

Phase Angle
$\mathrm{I} \sim \sin (\omega t)$
$V_{J} \sim \sin \left(\omega t+\varphi_{J}\right)$
φ_{J} phase angle that V_{J} LEADS $\mathrm{I}_{\text {total }}$
$\varphi_{x}{ }^{*}$ phase angle that V_{J} LEADS input $\mathrm{V}_{\text {in }}$

Questions?

Electronics - PHYS 2371/2

Lab Experiment Week-III

Time-dependent and AC Voltages

Electronics - PHYS 2371/2

General Circuit Instructions

Apply to this lab and all subsequent labs
(1) Draw the circuit diagram. This is important for any circuit you build, showing all instrument connections, as well as ground connections and other important information.
(2) Place the elements physically on the breadboard to mimic the circuit diagram.
(3) Make sure that all of the negative (ground/black) instrument connections are connected to the same point on the circuit whenever possible. Since the negative connections are usually connected together thru the power cables, they can short out a circuit component.
(4) Always set the scope display to enhance the visibility of the important data (for example, peak-to-peak voltages, phase shifts, cycles, etc.).

Electronics - PHYS 2371/2

Abstract

Worksheet-3, AC and Time-Dependent Voltages Name: \qquad Physics PHYS 2371/2372, Electronics for Scientists Don Heiman and Hari Kumarakuru, Northeastern University

This lab allows you to explore the behavior of the circuit elements, such as resistors/capacitors/inductors, to time-varying voltages. It also examines more combinations of circuit elements with AC signals.

I. The Oscilloscope

In this exercise you will become familiar with the digital scope.
Using a 5 V peak, 60 Hz sine wave from the function generator, view the waveform on the scope. Use the Measure function of the scope.

1. What is the peak-to-peak voltage?
2. What is the frequency of the waveform?
3. What is the period of the waveform?

Videos on
Oscilloscopes
(0-1:45, 0-3:30)
https://www.youtube.com/watch?v=u4zyptPLIJI http://www.youtube.com/watch?v=LAdEyEOOBjU

Electronics - PHYS 2371/2

II. Time Response of an RC circuit

Here you will explore the response of an RC (resistor/capacitor) circuit to a voltage pulse. Construct a circuit consisting of a $\mathrm{C}=0.1 \mu \mathrm{~F}$ capacitor and an $\mathrm{R}=2 \mathrm{k} \Omega$ resistor in series, and connect to the function generator. Use a BNC Tee on the "TTL" output from the function generator to go to both chnl-1 on the scope and the circuit. (Some function generators have the TTL output on the rear.) The TTL voltage is a square wave with voltage alternating between +5 V and 0 V . Note that this is equivalent to switching a DC voltage on and off (grounded). View the voltage across function generator on chnl-1 of the scope and the voltage across the capacitor (V_{c}) on chnl-2. Make sure you consider that the scope has a single ground (outer contact on the BNC connector), so you don't short out one circuit element.

1. Compute time constant $\tau_{\mathrm{C}}=\mathrm{RC}=$ \qquad and frequency $f_{o}=1 /\left(2 \pi \tau_{c}\right)=$ \qquad .
2. Adjust the FG to $f \ll f_{0}$. What is the peak voltage on the capacitor? $\mathrm{V}_{\mathrm{C}}=$ \qquad
(Note: "<<" means 5 or more times smaller)
3. Adjust the FG to $f \gg f_{0}$. What is the peak voltage on the capacitor? $\mathrm{V}_{\mathrm{C}}=$ \qquad
4. Adjust the FG to $f<f_{\mathrm{o}}$. Measure the circuit time constant, which is equal to the time it takes for the capacitor voltage, $\mathrm{V}_{\mathrm{C}}(\mathrm{t})$, to drop to $1 / e$ of any starting value.

$$
\tau_{\mathrm{C}}=
$$

\qquad
5. For the three frequency conditions above, plot $\mathbf{V}_{d}(\mathbf{t})$.

Electronics - PHYS 2371/2

III. Resonant Response of an RLC Circuit

The RLC circuit is often called a resonance circuit.
Construct a circuit with an R, L, and C in series. Connect an $R=100 \Omega$ resistor, $\mathbf{L \sim 5 0} \mathbf{~ m H}$ inductor, and $C=\mathbf{0 . 5} \boldsymbol{\mu F}$ capacitor in series across the function generator. Set the sine wave amplitude of the FG to a peak-to-peak voltage of $\mathrm{Vo} \sim 15 \mathrm{~V}$.

Use the two scope channels to measure V_{O} across the FG and V_{C} across the capacitor. Again, make sure that all the negative (black) connections are attached together. For the phase shift, $\Delta \mathrm{t}$, pay attention to the sign of the phase shift (relative time shift where the voltage crosses zero).

1. Measure the voltages V_{O} and V_{C} and Δt between V_{O} and V_{C}, for frequencies $f=40 \mathrm{~Hz}$ to 100 kHz .
2. Plot the gain for the capacitor $\left(\mathrm{G}_{\mathrm{c}}=\mathrm{V}_{\mathrm{C}} / \mathrm{V}_{\mathrm{o}}\right)$ as a function of f on a semi-log scale. Is G_{c} greater than 1 ? Collect additional data points near the resonance region to improve the plot.
3. On the graph, plot the theory for the gain and the phase (points for data, curved line for theory).

Do they match reasonably well? Does the inductor have resistance? \qquad
6. Compare the measured and calculated resonance frequency $f 0$ and maximum gain G_{c}.

$$
f_{0}(\text { meas })=
$$; Gc(meas) = \qquad $f_{0}($ calc $)=$ \qquad ; $\operatorname{Gc}($ calc $)=$ \qquad

7. Compute the phase shift ϕ_{C} from $\Delta \mathrm{t}$ for: $\phi_{\mathrm{C}}\left(f \ll f_{o}\right)=$ \qquad and $\phi_{C}\left(f \gg f_{0}\right)=$ \qquad .

Electronics - PHYS 2371/2

Make sure that all of the negative (ground/black) instrument connections are connected to the same point on the circuit whenever possible. Since the negative connections are usually connected together thru the power cables, they can short out a circuit component.

Note that I moved C to the bottom

OK

BAD

OK

Electronics - PHYS 2371/2

Drawing Circuits (free)

```
Circuit Diagram - https://www.circuit-diagram.org/
    (download/save png file/open in TWINUI, copy/paste file into document)
Digikey - http://www.digikey.com/schemeit#
CircuitLab - https://www.circuitlab.com/
    (can only copy whole screen page)
XCircuit - http://opencircuitdesign.com/xcircuit/
    (download)
SmartDraw - - http://www.smartdraw.com/software/electrical.asp
Teach logic gates and build circuits - http://logic.ly/
    (useful for digital circuits)
```


Electronics - PHYS 2371/2

Questions?

Ende

