Week #	Lectures	Weekly Topics (Chs.)	Homework (Ch-Problem)	Lab Experiments (always look for latest version)
III Sept 23-25	Wed Lecture Time-Dependent AC <u>Circuits</u>	The Oscilloscope (Ch-17) AC and Elements of Circuits (Ch-7/8) Circuit Analysis (LRC) (Ch-9/12) Resonance (Ch-10)	<u>7-all, 8-3</u> <u>12-all</u>	Worksheet-3, Worksheet-3 video RC data xls Time-Dependent AC Circuits (R, RC, LRC)
IV Sept 30-Oct 2	Wed Lecture Semiconductor Devices	Solid State Devices (Ch-40) <i>p-n</i> Junction Diodes (Ch-41) Transistors/Circuits (Ch-42-45)	<u>HW Handout</u>	<u>Worksheet-4,</u> Say Hello (and Goodbye) to the Transistor
V Oct 7-9	Wed Lecture Operational Amplifiers	Op-Amp Basics (Ch-28, 31) Basic Op-Amp Circuits (Ch-29)	<u>28-1/3/4, 29-</u> <u>1/2/3/4</u>	<u>Lab-5, <i>Op-Amps</i></u>
VI Oct 14	Wednesday Study for EXAM-1	Study for EXAM-1 Basics, AC Circuits, Semiconductors, Op-amps		No Lab
VII Oct 19, 21-23 MON/WED	MONDAY EXAM-I	Wed Lecture <u>Magnetoelectronics</u> Magnetic induction/flux Transformers (Ch-11)	<u>11-all</u>	Lab-6, Build a Magnetometer
VIII Oct 28-30	Wed Lecture Optoelectronics	Photodiode, LED, laser	none	Lab-7, Optoelectronics (coupled LED-photodiode)

Due Wednesday, Sept. 25

- Week-III HW (Chs. 7,8,12)
- Worksheet-3 on AC

TODAY

- Quick Review-Basics
- Alternating Current, Ch-7
 RMS
- Elements of AC Circuits, Ch-8

 resistor, capacitor, inductors(L)
 - impedance (Z), reactance (X)

(video break)

- □ AC Circuits, Ch-9
 - Gain in RC and LRC circuits
 - Frequency dependence
- Step Function Analysis, Ch-12
 RC circuit
- LRC Resonance, Ch-10
 add inductor (L)
- □ Lab-3, Time-varying AC Voltages - oscilloscope, RC and LRC circuits

Gustav Robert Kirchhoff (1824 – 1887)

He contributed to the fundamental understanding of electrical circuits.

Kirchhoff formulated his circuit laws, which are now ubiquitous in electrical engineering, in 1845, while still a student. He completed this study as a seminar exercise; it later became his doctoral dissertation. In 1857 he calculated that an electric signal in a resistanceless wire travels along the wire at the speed of light.

He proposed his law of thermal radiation in 1859, and coined the term **"black body" radiation** in 1862.

 $f = \omega / 2\pi$ $V_{pp} = 2 V_p$

frequency, units - Hz or cycles/s $T = 1/f = 2\pi/\omega$ period, units - s peak-to-peak voltage

How do you measure the power for AC? For DC, **Power = I_{DC} \times V_{DC}** both I and V are constant

With AC, I(t) and V(t)

RMS – root mean square

Averaging for AC signals of any waveform

<V_p> = 0 for sine wave

 $\mathbf{V}_{\rm RMS} = \sqrt{\frac{1}{T} \int_{0}^{T} \mathbf{V}^2(t) \, dt}$

RMS characterizes the average, independent of the waveform

Power $P = V_{RMS}^2 / R$ For sine wave $V_{RMS} = V_p / \sqrt{2} = 0.707 V_p$ For square wave $V_{RMS} = V_p$ For pulses $V_{RMS} < V_p$

Period T = 1 / 60 = 16.7 ms

Peak voltage $V_p = \sqrt{2} V_{RMS}$ $\approx 170 V$

Questions?

Simple AC, RMS

Basic Elements of AC Circuits

Inductor

as an electrical component, is a coil of wire.

When a current flows through it, energy is stored temporarily in a magnetic field in the coil.

How does it work in an AC Circuit?

It resists changes in current passing through it.

When the current flowing through an inductor changes,

the **time-varying magnetic field induces a voltage** in the conductor according to <u>Faraday's law of induction</u>,

which opposes the change in the current that created it. (Wikipedia)

Inductor in an AC Circuit

- When the **current** changes
- it creates a changing magnetic field
- this creates a reverse voltage
- thus opposing the original changing current

An inductor appears to have inertia,

- as it tries to keep the status quo,
- or fight any changes in the current.

Questions?

R, C, L in an AC Circuit → Phase Shift between V(t) and I(t)

Time dependence of V(t) and I(t) V(t) and I(t) may not be "in phase"

 $I = I_P \sin\left(\omega t\right)$

Resistor

Capacitor

Inductor

What are I-V relationships for <u>any</u> time-dependent voltages

R	V = IR	I = V/R	$(\Omega = volt/amp)$
С	$V=\frac{1}{C}\int Idt$	$I = C \frac{dV}{dt}$	(farad = coulomb/volt)
L	$V = L \frac{dI}{dt}$	$I = \frac{1}{L} \int V dt$	$(henry = \frac{volt - s}{amp})$

	R	С	L
I(t) =	V(t)/R	C <i>d</i> V(t)/ <i>d</i> t	-1/L ∫V(t) <i>dt</i>
V(t) =	I(t) R	1/C ∫I(t) <i>dt</i>	L dI(t)/dt
Z =	R	- <i>i</i> /ωC	<i>i</i> ωL
X = Z =	R	1/ωC	ωL
φ	0	V lags I by 90°	V leads I by 90°

Properties of R, C, L in an AC Circuit

- R dissipates energy in the form of heat
- C and L only change the flow of current
- C and L do not dissipate energy, they store energy
- C stores energy in an electric field
- L stores energy in the form of a magnetic field

C and **L** only "act" like resistances (reactance)

In order to use an *"effective resistance"* for C and L, we use the concept of Impedance and Reactance.

C Example – **RC Circuit Impedance**

$$Z_{R} = X_{R} = R = 1.0 kΩ$$

$$Z_{C} = -iX_{C} = -i/ωC$$

$$= -i/(2π*10^{3} s^{-1*}10^{-7} F)$$

$$= -i 1600 Ω$$

$$Z = (1.0 - 1.6 i) kΩ$$

X = ZZ* = $[(1.0-1.6 i)k\Omega^*(1.0+1.6 i)k\Omega]^{1/2}$ = $[(1.0 k\Omega)^2 + (1.6 k\Omega)^2]^{1/2}$ X = 1.9 kΩ C conducts more at higher ω

Combining Impedances

Simple way to derive series/parallel formulas

Series components

 $Z_T = \sum Z_i = Z_1 + Z_2 \cdots$

Parallel components

$$1/Z_{T} = \sum 1/Z_{i} = 1/Z_{1} + 1/Z_{2} \cdots$$

$$Z_{R} = \mathbf{R} \sim \mathbf{R}$$
$$Z_{C} = -i / \omega \mathbf{C} \sim 1/\mathbf{C}$$

Series components

Parallel components

 $\mathbf{R}_{\mathbf{T}} = \sum \mathbf{R}_{i} = \mathbf{R}_{1} + \mathbf{R}_{2} \cdots$

 $1/C_{T} = \sum 1/C_{i} = 1/C_{1} + 1/C_{2} \cdots$

 $\mathbf{1/R}_{T} = \sum \mathbf{1/R}_{i} = \mathbf{1/R}_{1} + \mathbf{1/R}_{2} \cdots$ $\mathbf{C}_{T} = \sum C_{i} = \mathbf{C}_{1} + \mathbf{C}_{2} \cdots$

Formulas are derived without Kirchhoff's laws

Questions?

Video

Tesla 8:12 – (17:57)

Tesla Video

Why is AC better than DC for power applications?

For DC, electrons **DO NOT** have to travel a long distance. The video was **WRONG.**

POWER GRID	Voltage	
GigaW Power plant	138-500 kVAC	
Large substation	26/69 kVAC	
Small substation	13,800 VAC	
Street	4,000 VAC	
House	120/240 VAC	

AC allows for lower transmission losses,

by increasing voltage and reducing current.

Using a few assumptions, the power loss in transmission through power lines with resistance R is $\Delta P = I^2 R$. Thus, the power loss is proportional **to** ~ I^2 .

You can keep the delivered power (**P=IV**) constant by simply increasing the voltage by the factor η , and reducing the current by the same factor of η .

So increasing the voltage by a factor of 2 and decreasing the current by a factor of 2, keeps the delivered power constant, but reduces the power loss in the power lines by a factor of 4.

Power grids use voltages up to nearly 10⁶ volts.

This effect is only useful with AC, as it is very easy to step up and down the voltages with **passive electrical transformers**.

Questions?

Step function analysis of RC circuit

KVL:
$$V_{0} - IR - V_{C} = 0$$
$$V_{0} - I(t)R - \frac{Q(t)}{C} = 0$$
$$I = dQ/dt$$
$$V_{0} - R \frac{dQ(t)}{dt} - \frac{Q(t)}{C} = 0$$
Guess the solution:
$$Q = A + Be^{\alpha t}$$
$$dQ/dt = \alpha Be^{\alpha t}$$
$$\left[V_{0} - \frac{A}{C}\right] - Be^{\alpha t} \left[\alpha R - \frac{1}{C}\right] = 0$$
$$A = V_{0}C \quad and \quad \alpha = -\frac{1}{RC} = -\frac{1}{\tau}$$
$$Q = CV_{0} + Be^{-\frac{t}{\tau}}$$
$$V_{C}(t) = Q/C = V_{0}e^{-\frac{t}{\tau}} \quad \text{for discharge}$$
$$\frac{\tau = RC}{\tau}$$

time

http://www.falstad.com/circuit/e-cap.html

LRC Circuit Analysis (Ch-9) General Series LRC Circuit Resonant Circuit

Input $V_{in}(t) = V_{p} \sin(\omega t)$

$$Compute \ Gain \quad G \equiv \left| \frac{V_{out}}{V_{in}} \right|$$

LRC Circuit Analysis (Ch-9)

Gain on R and C in LRC Circuit

LRC Gain G(f) - Voltage Divider

$$\begin{split} \overline{V_J} &= V_{in} \frac{Z_J}{Z_R + Z_L + Z_C}, \quad J = R, C, L \\ Z_R &= R, \quad Z_C = -i/\omega C, \quad Z_L = i\omega L \\ G_J &= \left| \frac{V_J}{V_{in}} \right| = \left| \frac{Z_J}{Z_R + Z_C + Z_L} \right| \\ G_C &= \sqrt{\left[\frac{-i/\omega C}{(R - i/\omega C + i\omega L)} \right] \left[\frac{i/\omega C}{(R + i/\omega C - i\omega L)} \right]} \\ \hline G_C &= \frac{1/\omega \tau_{RC}}{\sqrt{1 + (1/\omega \tau_{RC} - \omega \tau_{LR})^2}}, \quad \tau_{RC} = RC, \quad \tau_{LR} = L/R \end{split}$$

The resonance maximum occurs in $G_c(\omega)$ at ω_o when the squared term in the denominator is zero. $\omega_o = 1/\sqrt{LC}$

LRC Circuit Gains G(ω)

Circuit	Gain	Phase	
J	G_J , τ_{RC} = RC , τ_{LR} = L/R	Phase between V _J and I	<pre>< K</pre>
RC	G_{R} = ($\omega \tau_{RC}$) / [1 + ($\omega \tau_{RC}$) ²] ^{1/2}	$φ_{R}$ = atan (1/ωτ _{RC})	
RC	$G_{c}= 1 / [1 + (\omega \tau_{RC})^{2}]^{1/2}$	φ _c = atan (- ωτ _{RC})	Phase Angle
			$I \sim sin(\omega t)$
RL	G_{R} = 1 / [1 + ($\omega \tau_{LR}$) ²] ^{1/2}	$φ_{R}$ = atan (- ωτ _{LR})	$V_{J} \sim sin(\omega t + \varphi_{J})$
RL	$G_L = (\omega \tau_{LR}) / [1 + (\omega \tau_{LR})^2]^{1/2}$	$φ_L$ = atan (1/ωτ _{LR})	
			ϕ_J phase angle that
LRC	G _R = $1 / [1 + (\omega \tau_{LR} - 1/\omega \tau_{RC})^2]^{1/2}$	$φ_{R}$ = atan (1/ωτ _{RC} -ωτ _{LR})	V_{J} LEADS I_{total}
LRC	G _C = (1/ωτ _{RC}) / [1 + (ωτ _{LR} - 1/ωτ _{RC}) ²] ^{1/2}	$φ_{c}^{*}$ = atan (1/ωτ _{RC} -ωτ _{LR})-π/2	ϕ_X^* phase angle that
LRC	G _L = (ωτ _{LR}) / [1 + (ωτ _{LR} - 1/ωτ _{RC}) ²] ^{1/2}		$V_{\rm J}$ LEADS input $V_{\rm in}$
			Questions?

Lab Experiment Week-III

Time-dependent and AC Voltages

General Circuit Instructions

Apply to this lab and all subsequent labs

(1) <u>Draw the circuit diagram.</u> This is important for any circuit you build, showing all instrument connections, as well as ground connections and other important information.

(2) <u>Place the elements physically on the breadboard to mimic the circuit diagram</u>.

(3) Make sure that <u>all of the negative (ground/black) instrument connections are</u> <u>connected</u> to the same point on the circuit whenever possible. Since the negative connections are usually connected together thru the power cables, they can short out a circuit component.

(4) Always set the scope display to enhance the visibility of the important data (for example, peak-to-peak voltages, phase shifts, cycles, etc.).

Worksheet-3, AC and Time-Dependent Voltages N

Name:

Physics PHYS 2371/2372, Electronics for Scientists Don Heiman and Hari Kumarakuru, Northeastern University

This lab allows you to explore the behavior of the circuit elements, such as resistors/capacitors/inductors, to time-varying voltages. It also examines more combinations of circuit elements with AC signals.

I. The Oscilloscope

In this exercise you will become familiar with the digital scope. Using a 5 V peak, 60 Hz **sine wave** from the function generator, view the waveform on the scope. Use the **Measure** function of the scope.

1. What is the peak-to-peak voltage?	V _{pp} =
2. What is the frequency of the waveform?	f =
3. What is the period of the waveform?	P =

Videos on Oscilloscopes (0-1:45, 0-3:30) https://www.youtube.com/watch?v=u4zyptPLIJI http://www.youtube.com/watch?v=LAdEyEOOBjU

II. Time Response of an RC circuit

Here you will explore the response of an RC (resistor/capacitor) circuit to a voltage pulse. Construct a circuit consisting of a C=0.1 μ F capacitor and an R=2 k Ω resistor in *series*, and connect to the function generator. Use a BNC Tee on the **"TTL" output** from the function generator to go to both chnl-1 on the scope and the circuit. (Some function generators have the TTL output on the rear.) The TTL voltage is a *square wave* with voltage alternating between +5 V and 0 V. Note that this is equivalent to switching a DC voltage on and off (grounded). View the voltage across function generator on chnl-1 of the scope and the voltage across the capacitor (V_c) on chnl-2. Make sure you consider that the scope has a single ground (outer contact on the BNC connector), so you don't short out one circuit element.

1. Compute time constant τ_c =RC=_____ and frequency f_o =1/($2\pi \tau_c$)=_____.

2. Adjust the FG to $f << f_o$. What is the peak voltage on the capacitor? $V_c =$ _________ (Note: "<<" means 5 or more times smaller)

3. Adjust the FG to $f >> f_0$. What is the peak voltage on the capacitor? $V_c =$ ______

4. Adjust the FG to $f < f_o$. Measure the circuit time constant, which is equal to the time it takes for the capacitor voltage, V_c(t), to drop to 1/*e* of any starting value.

τ_c = _____

5. For the three frequency conditions above, <u>**plot**</u> $V_c(t)$.

Video on Function Generators

https://www.youtube.com/watch?v=Zink6v6TXk4

III. Resonant Response of an RLC Circuit

The RLC circuit is often called a *resonance circuit*.

- Construct a circuit with an R, L, and C in series. Connect an **R=100** Ω resistor, **L~50 mH** inductor, and **C=0.5 µF** capacitor in series across the function generator. Set the sine wave amplitude of the FG to a peak-to-peak voltage of Vo ~ 15 V.
- Use the two scope channels to measure V_0 across the FG and V_c across the capacitor. Again, make sure that all the negative (black) connections are attached together. For the phase shift, Δt , pay attention to the **sign** of the phase shift (relative time shift where the voltage crosses zero).
- 1. Measure the voltages V_0 and V_c and Δt between V_0 and V_c , for frequencies *f*=40 Hz to 100 kHz.
- 2. Plot the gain for the capacitor ($G_c = V_c/V_0$) as a function of f on a semi-log scale. Is G_c greater than 1? Collect additional data points near the resonance region to improve the plot.
- 4. On the graph, plot the theory for the gain and the phase (points for data, curved line for theory). Do they match reasonably well? Does the inductor have resistance?
- 6. Compare the measured and calculated resonance frequency f_0 and maximum gain G_c .

	<i>f</i> _o (meas) =;	Gc(meas) =
	<i>f</i> _o (calc) =;	Gc(calc) =
7. Compute the phase shift φ_{C} from	Δt for: $\phi_C(f << f_o)$ =	and $\phi_{C}(f >> f_{o}) =$

Make sure that <u>all of the negative (ground/black) instrument</u> <u>connections are connected</u> to the same point on the circuit whenever possible. Since the negative connections are usually connected together thru the power cables, they can short out a circuit component.

Drawing Circuits (free)

Circuit Diagram - https://www.circuit-diagram.org/

(download/save png file/open in TWINUI, copy/paste file into document)

Digikey – <u>http://www.digikey.com/schemeit#</u>

CircuitLab – <u>https://www.circuitlab.com/</u> (can only copy whole screen page)

XCircuit – <u>http://opencircuitdesign.com/xcircuit/</u> (download)

SmartDraw – <u>http://www.smartdraw.com/software/electrical.asp</u> (sign up)

> Teach logic gates and build circuits - <u>http://logic.ly/</u> (useful for **digital** circuits)

Questions?

Ende