A GPU-based Algorithm-specific Optimization for High-performance Background Subtraction

Chulian Zhang, Hamed Tabkhi, Gunar Schirner
Outline

• Motivation
• Background
• Related Work
• Approach
 – General Optimization
 – Algorithm-specific Optimization
 – Shared Memory Optimization
• Quality Exploration
• Conclusion
Motivation

• Computer Vision
 – Huge market
 • Surveillance, ADAS, HCI, traffic monitoring
 – Vision algorithm properties
 • Embarrassingly parallel
 • Demand high performance

• Possible Solutions for CV
 – CPU
 • low performance, high power
 – FPGA
 • High performance, low power
 • Hard to implement
 – GPU
 • High performance, relatively low power
 • Massively parallel cores
 • Suitable for throughput oriented applications
 • Easy to program
• Motivation
• Background
 • Related Work
 • Approach
 – General Optimization
 – Algorithm-specific Optimization
 – Shared Memory Optimization
• Quality Exploration
• Conclusion
Background Subtraction

• Background subtraction
 – Primary vision kernel
 – Frequently used in many market

• Mixture of Gaussians (MoG)
 – Gaussian background model for each pixel
 • Multiple Gaussians
 • Weight, mean, standard deviation
 – Adaptive
 • Operate on single video frame, recursively update the model
 – Embarrassingly parallel

• Advantages
 • Learning based algorithm
 • Deals better with gradual variations
GPU Architecture

• Streaming Multiprocessor
 – Many cores
 • Single inst. multiple thread (SIMT)
 – Large RF
 – Shared memory
 • On-chip, fast
 • Communication & sync

• Global Memory

• Observation
 – GPU architecture is fundamentally different from CPU
 – Application optimized for CPU single thread is not suitable for GPU

• Demand for algorithm-specific optimization
 – Adjust vision algorithms to get maximum performance
Outline

• Motivation
• Background

• Related Work
 • Approach
 – General Optimization
 – Algorithm-specific Optimization
 – Shared Memory Optimization
 • Quality Exploration
• Conclusion
Related Work

• Focus on general GPU optimizations
 – Memory coalescing [Kumar, 13] [Pham, 10] [Li, 12]
 – Overlapped execution [Kumar, 13] [Pham, 10]
 – Shared memory [Kumar, 13] [Pham, 10] [Li, 12]
 • No detail performance analysis
 – Limited performance speedup
 • 20x

• Algorithm optimizations [Azmat, 12]
 – Reduce costly operations
 • Quality loss

• [Kumar, 13], “Real-time Moving Object Detection Algorithms on High-resolution Videos using GPUs”
• [Pham, 10], “GPU Implementation of Extended Gaussian Mixture Model for Background Subtraction”
• [Poremba, 10], “Accelerating adaptive background subtraction with GPU and CEBA architecture”
• [Li, 12], “Three-level GPU accelerated Gaussian Mixture Model for Background Subtraction”
• OpenCV
• [Azmat, 12], “Accelerating adaptive background modeling on low-power integrated GPUs ”
Outline

• Motivation
• Background
• Related Work
• Approach
 – General Optimization
 – Algorithm-specific Optimization
 – Shared Memory Optimization
• Quality Exploration
• Conclusion
Experiment Setup

• Hardware Platform
• OS
 – RHEL 6.2
• Algorithm Setup
 – 3 Gaussians
 – Double precision
• Baseline
 – CPU
 – Single thread
 – -O3 optimization
• Input
 – HD frames (1080 x 1920)

<table>
<thead>
<tr>
<th></th>
<th>CPU</th>
<th>GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>Intel Xeon E5-2620</td>
<td>nVidia Tesla C2075</td>
</tr>
<tr>
<td>Cores</td>
<td>6</td>
<td>448</td>
</tr>
<tr>
<td>Frequency</td>
<td>2.5 GHz</td>
<td>1.15 GHz</td>
</tr>
<tr>
<td>GFLOPS</td>
<td>120.3</td>
<td>1030</td>
</tr>
<tr>
<td>Cache</td>
<td>L2 (256K)</td>
<td>L1(16/48K)</td>
</tr>
<tr>
<td></td>
<td>L3 (15M)</td>
<td>L2 (768K)</td>
</tr>
<tr>
<td>Memory BW</td>
<td>12.8 GB/s</td>
<td>144 GB/s</td>
</tr>
</tbody>
</table>

Embedded Systems Laboratory, Northeastern
General Optimizations

• Memory Coalescing
 – Non-coalesced
 • Locality within each thread
 • Optimized for CPU single-thread
 – Coalesced
 • Locality across different threads
 • GPU massively-parallel threads
 – Request will be coalesced

• Overlapped Execution
 – Overlap comm. & computation

• Result
Outline

• Motivation
• Background
• Related Work
• Approach
 – General Optimization
 – Algorithm-specific Optimization
 – Shared Memory Optimization
• Quality Exploration
• Conclusion
Algorithm-specific Optimization

• General Optimization is not enough
 – GPU is not fully utilized

• Algorithm-specific optimization
 – Tune the algorithm to better fit the underlying architecture

• Examples
 – Vision algorithm has many branches
 – Branches reduce GPU utilization

• Solutions
 – Remove branches, even at the cost of extra computation
 – Overall performance will be better
Branch Reduction

• Gaussian background checking (CPU code)
 1. Sorting
 2. Check from HighestRank
 3. Stop when a match happens

• Problem
 – New pixel has higher chance to match with higher rank Gaussian
 – CPU-style optimization
 – Add branches

• GPU code
 – Remove sorting
 – Check all components
 – Preserve correctness

• Result
 – Branch number reduced
 – Branch efficiency increased
Source-level Predicated Execution

- Predicated instruction
 - Generated by GPU compiler
- Gaussian update
 - Compiler cannot detect it
 - Source-level predicated
 - Use flag to decide the effect
 - Remove branch
- Result

Algorithm 4 non-Predicated Execution

1: for $k = 0$ to numGau do
2: if match then
3: $w[k] = \alpha \cdot w[k] + (1 - \alpha)$
4: $\text{tmp} = (1 - \alpha)/w[k]$
5: $m[k] = f(\text{tmp})$
6: $sd[k] = g(\text{tmp})$
7: else
8: $w[k]* = \alpha$
9: end if
10: end for

Algorithm 5 Predicated Execution

1: for $k = 0$ to numGau do
2: $w[k] = \alpha \cdot w[k] + \text{match} \cdot (1 - \alpha)$
3: $\text{tmp} = (1 - \alpha)/w[k]$
4: $m[k] = (1 - \text{match}) \cdot m[k] + \text{match} \cdot f(\text{tmp})$
5: $sd[k] = (1 - \text{match}) \cdot sd[k] + \text{match} \cdot g(\text{tmp})$
6: end for

Fig. 7: Performance for Alg-specific Optimization

(a) Branch
(b) Memory
(c) Reg. & Occup.

Algorithm 5 Predicated Execution

1: for $k = 0$ to numGau do
2: $w[k] = \alpha \cdot w[k] + \text{match} \cdot (1 - \alpha)$
3: $\text{tmp} = (1 - \alpha)/w[k]$
4: $m[k] = (1 - \text{match}) \cdot m[k] + \text{match} \cdot f(\text{tmp})$
5: $sd[k] = (1 - \text{match}) \cdot sd[k] + \text{match} \cdot g(\text{tmp})$
6: end for
Register Usage Reduction

• Solution
 – Reduce registers per thread

• Approach
 – Cascade arithmetic operations
 – Remove intermediate variables
 – Guided by source code
 • Compiler cannot find the minimum # register that yield best performance

• Result

![Bar chart showing occupancy and performance before and after the solution](chart.png)
Outline

• Motivation
• Background
• Related Work
• Approach
 – General Optimization
 – Algorithm-specific Optimization
 – Shared Memory Optimization
• Quality Exploration
• Conclusion
Shared Memory Optimization

• Frame-based operation
 – One frame each time
 • Read / write Gaussian parameters from / to global memory

• Shared Memory
 – Small size
 – Need data reuse

• Window-based operation
 – Split one frame into smaller windows
 • Window size decided by shared memory size
 – Process the same window across many frames
 • Frame group
 • Increase data reuse
 – Shift to next frame group after finishing all windows
Shared Memory Optimization

- **Positive**
 - Memory access goes to shared memory

- **Negative**
 - Latency per frame is increased

- **Optimal group size?**
 - 8 frames
 - Occupancy decreases with increasing group size
Outline

• Motivation
• Background
• Related Work
• Approach
 – General Optimization
 – Algorithm-specific Optimization
 – Shared Memory Optimization
• Quality Exploration
• Conclusion
Quality Exploration

- Quality Assessment
 - Ground Truth
 - CPU result with double precision
 - Multi-Scalar Structural SIMilarity (MS-SSIM)
 - Quantify the structural similarity between two images

- Quality Result
 - Background result is always 99%
 - Foreground
 - Slightly drop due to algorithm tuning

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>Foreground</td>
<td>99%</td>
<td>99%</td>
<td>96%</td>
<td>97%</td>
<td>97%</td>
<td>95%</td>
</tr>
</tbody>
</table>
Outline

• Motivation
• Background
• Related Work
• Approach
 – General Optimization
 – Algorithm-specific Optimization
 – Shared Memory Optimization
• Quality Exploration

→ Conclusion
Conclusion

• GPU is perfect for Computer Visions
 – massively parallel

• Existing vision algorithms optimized for CPU

• Demand for optimal performance from GPU
 – Understand the vision algorithms
 – Tune algorithm to fit architecture

• Future work
 – Apply same principles to other vision algorithms
 – Develop & evaluate optimizations for embedded GPU
Thank you!

Q & A