Adaptive Stream Processing

1) Adaptive Vision Streaming
- Often based on machine-learning algorithms
 - e.g., Mixture of Gaussians (MoG), Support Vector Machine (SVM)
- Realize complex vision processing with high quality
 - e.g., object detection, tracking, classification
- Continuously update model of frame characteristics
 - Frame model is often large (e.g., MoG with 248 MB per frame 1080p)

Mixture of Gaussian (MoG)

1) Mixture of Gaussian (MoG)
- Extracts ForeGround (FG) pixels from BackGround (BG) scene
- Adaptive learning-based BG tracking for static camera position

MoG Bandwidth / Quality Trade-Off

1) Bandwidth Reduction
- Reduce precision of frame model
 - At cost of some quality
- MoG Frame Model: Gaussian parameters
 - Transfer/store only most significant bits
 - E.g., 13bit instead of 32bits
- More elaborate bit allocations possible
- Realized by precision adjustment blocks
- Streamed access hides latency
- Tradeoff bandwidth v.s. Quality

2) MoG Resource Demands
- Computation:
 - 24.3 GOPs at 1080p60 (SW infeasible)
 - 20 (float) or 13 (integer) Blackfin DSP
- Communication:
 - 32 bits per Gaussian parameters (weight, mean, standard deviation)
 - Saturating LPDDR2

MoG Architecture Template

1) Communication Components
- Independent traffic management
- Separate clock domains for computation and communication
- Dedicated precision adjustment blocks
- Transferring most significant bits
- 2 DMA channels for Gaussian parameters
- Connected to AXI with burst transfer
- Async FIFOs
 - Bridge clock domains
 - Compensate for slow interconnect (148.9MHz pixel v.s. 125MHz AXI fabric)

2) System Integration
- Direct access to system I/O interfaces
- Keep the streaming data on-chip
- Remove costly memory interaction
- Enable peer-processor arrangement
- Host processor only performs first initialization

Experimental Results

1) Zynq 7020 Realization
- Design spreads over chip
- Significant routing overhead
- 34% DSP slice utilization
- Resolution: 1080p @ 30FPS
- Limit: peak memory bandwidth of 4.2 GBs

2) Power Consumption
 - 600x more power efficient than SW (Cortex A9)
 - 480mWatt on-chip power
 - Only 19% for computation
 - Only 1% for precision adjustment block
 - 67% for transferring Gaussian parameters
 - 28% and 26%, for DMA and Async FIFOs

3) Power/Quality Trade-off
 - Quality requirement results in:
 - Bandwidth requirement
 - Power consumption
 - E.g., 100% quality -> 380mW
 - 1/3rd power of [Appiah 2005]