1. The topological space X is *locally compact* if the following condition is satisfied: For every point $x \in X$, there is a compact subset $K \subseteq X$ that contains an (open) neighborhood of x.

Let X be a locally compact Hausdorff space, and let $\{\infty\}$ be a single point disjoint from X. Define $Y = X \cup \{\infty\}$, and define a subset $U \subseteq Y$ to be open if:

- $U \subset X$ and U is open in X, or
- $\infty \in U$ and $X \setminus U$ is compact in X.

(a) Show that Y is a topological space.

(b) Show that Y is compact and Hausdorff.

(c) What is Y if $X = \mathbb{R}^n$?

2. Prove or disprove the following:
 (a) If X and Y are path-connected, then $X \times Y$ is path-connected.

 (b) If $A \subseteq X$ is path-connected, then \overline{A} is path-connected.

 (c) If X is locally path-connected, and $A \subseteq X$, then A is locally path-connected.

 (d) If X is path-connected, and $f : X \to Y$ is continuous, then $f(X)$ is path-connected.

 (e) If X is locally path-connected, and $f : X \to Y$ is continuous, then $f(X)$ is locally path-connected.

3. Let $X = \{(z, y) \in \mathbb{C}^2 \mid y = z^3\}$, let $Y = X \setminus \{(0, 0)\}$, and let $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$.

 (a) Show that the map $p : X \to \mathbb{C}$, $(z, y) \mapsto z$ is a homeomorphism.

 (b) Show that the map $q : Y \to \mathbb{C}^*$, $(z, y) \mapsto y$ is a covering map, and identify the fiber $F = q^{-1}(1)$ of this map. Is the cover a regular cover?

 (c) Fix a basepoint $x_0 \in F$, and determine the induced homomorphism $q_\ast : \pi_1(Y, x_0) \to \pi_1(\mathbb{C}^*, 1)$. How does $\pi_1(\mathbb{C}^*, 1)$ act on F?
4. Let T^2 be the 2-dimensional torus.
 (a) Identify (up to homeomorphism) all the path-connected spaces E that appear as the total space of a covering map $p: E \to T^2$. Which one of those is the universal cover?
 (b) Prove, or give a counterexample to the following assertion: Every continuous map $S^1 \to T^2$ is null-homotopic.
 (c) Prove, or give a counterexample to the following assertion: Every continuous map $S^2 \to T^2$ is null-homotopic.

5. Let M_g be a compact, connected, orientable surface of genus $g \geq 0$, and let $M_{g,r}$ be this surface, with $r \geq 1$ distinct points removed.
 (a) What is the fundamental group of $M_{g,r}$?
 (b) Compute the homology groups $H_i(M_{g,r}, \mathbb{Z})$, for all $i \geq 0$.
 (c) Let $N \to M_{g,r}$ be a k-fold cover. Show that if N is connected then $N = M_{h,s}$, for some $h \geq 0$ and $s \geq 1$.
 (d) Find a relation among the integers g, r, k, h, s.

6. If M and N are two connected, oriented manifolds of dimension n, their connected sum, $M \sharp N$, is obtained by removing an open n-disk from each manifold, and identifying the boundaries of the two disks by an orientation-preserving homeomorphism.
 (a) Express the Euler characteristic $\chi(M \sharp N)$ in terms of $\chi(M)$ and $\chi(N)$.
 (b) Suppose $n > 2$. Express the fundamental group $\pi_1(M \sharp N)$ in terms of $\pi_1(M)$ and $\pi_1(N)$.