1. Every non-zero homomorphic image of a local ring is local. Prove it.

2. Determine, up to isomorphism, the cyclic modules over the rings in (a) and (b):
 (a) \(\mathbb{Q}[x]/(x^4) \)
 (b) \(\mathbb{Q}[x]/(x^2 - 3x + 2) \)
 (c) Determine all the prime ideals of \(\mathbb{Z}[x]/(x^2 - 3x + 2) \).

3. State and prove sufficient condition(s) on a multiplicative subset \(S \) of \(\mathbb{Z} \) which insure that \(S^{-1}\mathbb{Z} \) is the field of rationals.

4. (a) Let \(G = \mathbb{Z}/(260) \oplus \mathbb{Z}^2 \oplus \mathbb{Q} \). Find a divisible group (injective \(\mathbb{Z} \)-module) \(D \) and an inclusion \(G \rightarrow D \). Justify your statement.
 (b) Find the quotient of \(7/25 \) by \(n = 15 \) in the divisible group \(\mathbb{Z}(5^\infty) \)
 (c) Explain why \(\mathbb{Z}_{35} \) is not divisible.

5. EXAMPLES. In each case justify your answer by giving a proof.
 (a) Give an example of a commutative ring \(R \) and an element \(x \in R \) which is irreducible but not prime.
 (b) Give an example of a commutative ring \(R \) and an element \(x \in R \) which is prime but not irreducible.
 (c) Give an example of a ring \(R \) and a projective \(R \)-module which is not free.
 (d) Give an example of a ring \(R \) so that \(R \oplus R \cong R \oplus R \) as left \(R \)-modules (i.e. which does not have the invariant dimension property).
 (e) Give an example of a split short exact sequence over the ring \(R = \mathbb{Z}[x] \).
 (f) Give an example of a non-split short exact sequence over the ring \(R = \mathbb{Z}[x] \).