Linear Algebra

1. Let \(V \) be the subspace of \(\text{Mat}_{2 \times 2}(\mathbb{C}) \) consisting of trace 0 matrices

\[
V = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a + d = 0 \right\},
\]

and let

\[
E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.
\]

Define a linear map \(f : \text{Mat}_{2 \times 2}(\mathbb{C}) \to \text{Mat}_{2 \times 2}(\mathbb{C}) \) by the formula

\[
f(X) = EX -XE.
\]

(a) Show that \(f \) restricts to a map \(f|_V : V \to V \), and give the matrix associated to \(f|_V \) (making sure to clearly state the relevant basis).

(b) Find the Jordan canonical form of \(f \).

2. Let \(V \) be an infinite dimensional vector space over a field \(K \), and \(\{v_i\}_{i \in I} \) be a basis of \(V \). For each \(i \in I \), let \(f_i : V \to K \) be defined by

\[
f_i(v_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j. \end{cases}
\]

Prove that \(\{f_i\}_{i \in I} \) is linearly independent but does not span the dual space \(V^* \).

3. Let \(V \) be a finite dimensional vector space, and \(S_r(V) \) the \(r \)-th symmetric power of \(V \). Use universal properties to prove that there is a canonical isomorphism

\[
S_r(V^*) \cong S_r(V)^*
\]

of vector spaces. \textit{Your isomorphism should not involve the choice of a basis.}
4. Let M be an $n \times n$ matrix with entries in \mathbb{Z} and $\det(M) \neq 0$. Prove that all entries of M^{-1} are in \mathbb{Z} if and only if $\det(M) = \pm 1$.

5. Let $q: \mathbb{R}^3 \to \mathbb{R}$ be the quadratic form given by

$$q(x, y, z) = -x^2 + 4xy + 4xz + 2y^2 - yz + 2z^2$$

(a) Find the matrix B associated to q.
(b) Reduce B to diagonal form. (Hint: the eigenvalues are small integers.)
(c) State the signature of q.

Groups

Reminder: for answers where you are asked to calculate something, the calculations should be in the context of a proof which justifies your work in order to receive full credit.

6. Determine the number of isomorphism classes of abelian groups of order 360.

7. Let G be the group of 3×3 matrices over $\mathbb{Z}/2\mathbb{Z}$ of determinant 1. Determine the order of G.

8. Let G be a group and Z the center of G, and suppose that G/Z is cyclic. Prove that G is abelian.

9. Let G and H be the abelian groups

$$G = \mathbb{Z}/30\mathbb{Z} \oplus \mathbb{Z}, \quad H = \mathbb{Z}/15\mathbb{Z} \oplus \mathbb{Z}/7\mathbb{Z}.$$

Determine the number of group homomorphisms from G to H, that is, the number of elements of $\text{Hom}_{\mathbb{Z}}(G, H)$.

10. Determine the number of conjugates in S_7 of the permutation

$$\sigma = (2, 3, 1, 5, 6, 4, 7).$$

We use the notation $\sigma = (\sigma(1), \sigma(2), \sigma(3), \ldots, \sigma(7))$. For example: $\sigma(1) = 2, \sigma(2) = 3, \sigma(5) = 6, \text{ and } \sigma(7) = 7$.

2