Swastik Kar

Swastik Kar and Yung Joon Jung

PhD, Indian Institute of Science, Bangalore, India, 2004

Area(s) of Expertise

Experimental Nanophysics

Research Interests

Prof. Kar’s interests lie in fundamental and applied research of graphene and related materials. Graphene is an exotic, single-atom-thick, perfectly two-dimensional, pure sp2-bonded allotrope of carbon with exceptionally high carrier mobility, mechanical strength, and thermal conductivity. Due to its unique gapless band-structure and low-energy linear dispersion E(k) = υFħ|k|, charge carriers in graphene are massless relativistic Dirac Fermions that demonstrate spectacular quantum properties such an anomalous quantum Hall effect, the Klein paradox, and a breakdown of the adiabatic Born-Oppenheimer approximation. Graphene also shows extraordinary optical and molecular interaction phenomena, resulting in a rich spectrum of novel 2D physics. At the same time, with its conductance being susceptible to modulation under a gate voltage, by photons, or by doping, and with a number of large-scale fabrication techniques becoming available, graphene is the world’s thinnest (single-atom-thick) transistor, photodetector, and molecular sensor.

The research group of Prof. Kar will look at exciting new directions related to the electronic and optical properties of graphene-based nanostructures. Topics of interest include:

  • Electronic Transport
  • Nanoelectric devices
  • Engineered optics
  • Electrochemical energy storage
  • molecular sensing
  • Photovoltaics

In addition to graphene, Professor Kar is also interested in other nanomaterials such as metal nanoparticles, nanowires, nanotubes, fullerenes etc., and issues related to metal-insulator transitions, nanoscale magnetism and superconductivity. In particular, an ongoing project is related to the development of next generation nanoscale interconnects for gigascale integration using parallel architectures of single- and multi-wall carbon nanotubes (NSF funded).

Prof. Kar has a strong commitment to collaborative and multidisciplinary research in nanoscience and nanotechnology, and is always open to new and interesting frontiers of research in a multitude of disciplines.

Lab Website


View Physics Faculty


Department of Physics
204 Dana Research Center

View Physics Faculty

Jung and Kar’s $200K NSF Grant Could Commercialize Low-Cost Radiation Detectors

Mechanical and Industrial Engineering (MIE) Professor Yung Joon Jung, along with co-principal investigator Associate Professor Swastik Kar of the Department of Physics, has been awarded a $200K grant from the National Science Foundation (NSF) for an interdisciplinary research project that uses nanotechnology to create highly sensitive and marketable detectors of radioactivity and nuclear radiation.

Physics discovery unlocks ingredients of 2-D sandwich

Layering 2-D crystals is a little like building a club sandwich, says Northeastern physicist Swastik Kar. But a new discovery allows researchers to rearrange the ingredients, producing new properties and opening up a world of possibilities for new materials.

From cameras to computers, new material could change how we work and play

Northeastern physicists Swastik Kar and Srinivas Sridhar led a research team whose novel work has potential applications for improved cellphone cameras and tiny transistors that when multiplied by the billions could fuel computers.