1. Find the coefficient of \(x^7y^2\) in the expansion of \((2y - x)^9\).

Solution. From the binomial theorem, we find the coefficient to be

\[
(-1)^7 \cdot 4 \cdot \binom{9}{2} = -4 \cdot \frac{9 \cdot 8}{2} = -144.
\]

2. Find the smallest positive integer \(x\) such that

\[
x \equiv 2 \mod 3,
\]

\[
x \equiv 3 \mod 4,
\]

\[
x \equiv 4 \mod 5.
\]

Solution. From the first equation we write \(x = 3t + 2\), for a nonnegative integer \(t\). The second equation then gives \(x = -t + 2 = 3 \mod 4\), therefore \(t = 3 \mod 4\). We write \(t = 4s + 3\), which makes \(x = 12s + 11\). The third equation now gives \(x = 2s + 1 = 4 \mod 5\), so \(2s = 3 \mod 5\), therefore \(s = 4 \mod 5\). The smallest positive \(s\) is thus \(s = 4\) which gives \(x = 12 \cdot 4 + 11 = 59\).

3. Determine whether the following functions are injective, surjective or bijective (briefly explain). Indicate which are invertible.

(a) \(f : \mathbb{R} \to \mathbb{R}, f(x) = 3x + 1\)

(b) \(f : \mathbb{N} \to \mathbb{N}, f(x) = x^2\)

(c) \(f : [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1], f(x) = \sin x\).

Solution. (a) \(f\) is bijective, therefore invertible. (b) \(f\) is injective but not surjective. (c) \(f\) is injective, therefore invertible.

4. Calculate \(17^{58} \mod 77\).

Solution. We use the Chinese Remainder Theorem, so we calculate first the residues modulo 7 and modulo 11. We have

\[
\text{mod 7 : } 17^{58} = 17^{6 \cdot 9 + 4} = (\text{Euler’s theorem}) 17^4 = 3^4 = 81 = 4.
\]

\[
\text{mod 11 : } 17^{58} = 17^{10 \cdot 5 + 8} = (\text{Euler’s theorem}) 17^8 = 6^8 = 36^4 = 3^4 = 81 = 4.
\]

By the Chinese Remainder Theorem, we have \(17^{58} = a \mod 77\), where \(a\) is the minimal positive integer satisfying

\[
a = 4 \mod 7 \text{ and } a = 4 \mod 11.
\]

Clearly \(a = 4\), so \(17^{58} = 4 \mod 77\).
5. Let \(a_n, n \geq 1, \) be the Fibonacci sequence, defined by
\[
a_1 = a_2 = 1, \quad a_n = a_{n-1} + a_{n-2}.
\]
Show by induction that
\[
\sum_{n=1}^{k} (-1)^n a_n = (-1)^k a_{k-1} - 1.
\]

Solution. The expression on the right makes sense when \(k \geq 2. \) We take \(k = 2 \) as the base case of the induction. The statement is in this case \(-a_1 + a_2 = a_1 - 1. \) Both sides of the equality are in this case zero, so the equality holds. We now assume the statement holds for \(k \) and show it for \(k + 1. \) We have
\[
\sum_{n=1}^{k+1} (-1)^n a_n = \left(\sum_{n=1}^{k} (-1)^n a_n \right) + (-1)^{k+1} a_{k+1}
\]
\[
= \left((-1)^k a_{k-1} - 1 \right) + (-1)^{k+1} a_{k+1}
\]
\[
= (-1)^{k+1} (a_{k+1} - a_{k-1}) - 1
\]
\[
= (-1)^{k+1} a_k - 1,
\]
which is exactly the statement that was to be proved, for \(k + 1. \) In the equation above, the induction hypothesis (the statement for \(k \)) was used on the second line, and the Fibonacci defining equality \(a_{k+1} = a_k + a_{k-1} \) was used on the last line.

6. Prove or disprove the following statement: The product of two irrational numbers is always irrational.

Solution. The statement is false. \(\sqrt{2} \) is an irrational number, but \(\sqrt{2} \cdot \sqrt{2} = 2 \in \mathbb{Q}. \)

7. Negate the statement "For all positive real numbers \(y \) and \(z, \) there exists a real number \(x \) so that \(e^x \cdot y = z. \)"

Solution. The negation is: "There exist positive real numbers \(y \) and \(z \) so that for all real numbers \(x, \) \(e^x \cdot y \neq z. \)"

8. Prove that \(S(n, n - 1) = \binom{n}{2}. \)

Solution. \(S(n, n - 1) \) is the number of ways in which a set with \(n \) elements can be partitioned into \(n - 1 \) subsets. In this type of partition, it will necessarily be the case that \(n - 2 \) of the subsets have one element, and the remaining subset has two elements. What determines entirely the partition is therefore the choice of a two-element subset. There is no choice afterwards: each remaining element will give rise to a one-element subset. The number of ways to choose a two-element subset out of an \(n \)-element set is simply the binomial number \(\binom{n}{2} \).

9. Suppose you go to Whole Foods and buy 12 items, each with a similar weight. You want to distribute the items into three identical bags of similar weight to carry. So you decide to place 4 items in each bag. In how many different ways can you do this?
The number of surjections from a set with 12 elements to a set with 3 elements so that each of the 3 target values is assumed 4 times is the multinomial number \(\binom{12}{4,4,4} \). Since the three bags are identical, swapping two does not lead to a new distribution of the items. There are \(3! = 6 \) ways to permute the bags. So the number of ways in which the items can be distributed into the three identical bags is

\[
\binom{12}{4,4,4} \cdot \frac{1}{6} = \frac{12!}{4!4!4!6} = 23100.
\]

10. If \(a, b \in \mathbb{Z} \), prove that \(a^2 - 4b \neq 2 \).

Solution. Assume by contradiction that the equality \(a^2 - 4b = 2 \) can be satisfied for integer \(a \) and \(b \). We then have \(a^2 = 4b + 2 = 2(2b + 1) \). It follows that 2 divides \(a \), so we can write \(a = 2k \) for an integer \(k \). We then have \(4k^2 = 2(2b + 1) \), so \(2k^2 = 2b + 1 \). The left side is even while the right side is odd; this equality cannot hold. By reductio ad absurdum the equality \(a^2 - 4b = 2 \) cannot be satisfied for integer \(a \) and \(b \).

11. Consider the set \(S = \{15x - 9y \mid x, y \in \mathbb{Z} \} \). Show that \(S = 3\mathbb{Z} \).

Solution. Recall that \(3\mathbb{Z} = \{3z \mid z \in \mathbb{Z} \} \). We show first \(S \subset 3\mathbb{Z} \), then \(3\mathbb{Z} \subset S \). Let \(a \in S \), then \(a = 15x - 9y \) for some integers \(x \) and \(y \). So \(a = 3(5x - 3y) = 3z \), where we set \(z = 5x - 3y \in \mathbb{Z} \). Therefore \(a \in 3\mathbb{Z} \), so \(S \subset 3\mathbb{Z} \).

Conversely, let \(b = 3z \in 3\mathbb{Z} \). We write \(b = (15 \cdot 2 - 9 \cdot 3)z = 15(2z) - 9(3z) = 15x - 9y \), where we set \(x = 2z \) and \(y = 3z \), both integers. Thus \(b \in S \), so we conclude \(3\mathbb{Z} \subset S \) as well.

12. Suppose Bob wants to establish a secure communication channel with Alice using the RSA scheme. Bob’s encryption is \(E(M) = M^e \mod (n) \) and he chooses \(p = 3 \) and \(q = 7 \) and forms \(n = pq \) with \(e = 5 \).

(i) What should his decryption function be?

(ii) If \(M = 16 \), what is the encrypted message \(E(M) \)?

(iii) Verify directly that the decryption gives back \(M \).

Solution. (i) The decryption function is \(D(N) = N^d \), where \(d \) is chosen so \(de = 1 \mod \phi(n) \). We have \(\phi(n) = (p - 1)(q - 1) = 2 \cdot 6 = 12 \). Thus we need to find \(d \) so that \(5d = 1 \mod 12 \). We conclude \(d = 5 \).

(ii) The encrypted message is \(16^5 \mod 21 \). We calculate this by the Chinese Remainder Theorem: we have \(16^5 = 1 \mod 3 \), and \(16^5 = 2^5 = 32 = 4 \mod 7 \). The smallest \(a \) so that \(a = 1 \mod 3 \) and \(a = 4 \mod 7 \) is \(a = 4 \). We conclude that \(16^5 = 4 \mod 21 \), so the encrypted message is \(E(16) = 4 \).

(iii) The decryption is \(4^5 \mod 21 \) which should give us back \(M = 16 \). Indeed, \(4^5 = 16 \cdot 64 = 16 \mod 21 \), since \(64 = 3 \cdot 21 + 1 \).

13. In how many ways can \(n \) indistinguishable balls be put into \(r \) distinguishable boxes so that no box is empty?
Solution. Since each box is supposed to be nonempty, the first r balls are each placed into a distinct box. The remaining $n - r$ balls are then placed with no constraints into the r boxes. We are to count the number of such placements. For each placement of the $n - r$ balls, we label each of the balls by the number of the box it went into, obtaining a sequence of numbers (a_1, \ldots, a_{n-r}) with the property that

$$1 \leq a_1 \leq a_2 \leq \cdots \leq a_{n-r} \leq r.$$

The number of such sequences is, as explained below in Problem 16, the binomial number

$$\binom{r + (n - r - 1)}{n-r} = \binom{n-1}{n-r} = \binom{n-1}{r-1}.$$

It is easy to see this gives the right answer in particular cases such as when $n = r + 1$.

14. How many integers between 1 and 1000 are not divisible by any of 2, 3, 11, 13?

Solution. We calculate $2 \cdot 3 \cdot 11 \cdot 13 = 858$. The number of integers a so that $1 \leq a \leq 858$, which are not divisible by 2, 3, 11, or 13 and therefore are exactly coprime to 858, is $\phi(858) = 240$. We are still to calculate the number of positive integers a, not divisible by 2, 3, 11, or 13, so that $1 \leq a \leq 1000$. This is the same as the number of integers b, not divisible by 2, 3, 11, or 13, so that $1 \leq b \leq 142$. The last count, which can be performed in a variety of ways, gives 40. We conclude that the number of integers between 1 and 1000 not divisible by any of 2, 3, 11, 13 is 280.

15. Find 3^{-1} in \mathbb{Z}_{13}, and 5^{-1} in \mathbb{Z}_{27}.

Solution. In \mathbb{Z}_{13}, we have $3 \cdot 9 = 27 = 1 \mod 13$, so $3^{-1} = 9$. In \mathbb{Z}_{27}, we have $5 \cdot 11 = 55 = 1 \mod 27$, so $5^{-1} = 11$.

16. Let n be a positive integer. Find the number of triples (a_1, a_2, a_3) so that

$$1 \leq a_1 \leq a_2 \leq a_3 \leq n.$$

Solution. If we let $b_1 = a_1$, $b_2 = a_2 + 1$, $b_3 = a_3 + 2$ we have

$$1 \leq b_1 < b_2 < b_3 \leq n + 2.$$

The number of triples (b_1, b_2, b_3) is the number of ways of choosing three distinct elements out of the set of first $n + 2$ positive integers, in other words, it is the binomial number

$$\binom{n+2}{3} = \frac{n(n+1)(n+2)}{6}.$$

The number of original triples (a_1, a_2, a_3) equals the number of triples (b_1, b_2, b_3) so it is also given by the binomial above.

17. Prove by induction that for any natural number n, $10^0 + 10^1 + \cdots + 10^n < 10^{n+1}$.
Solution. For \(n = 0 \), we have \(10^0 = 1 < 10^{0+1} = 10 \). We assume now that the inequality holds for \(n \) and we show it for \(n + 1 \). We have

\[
\sum_{k=0}^{n+1} 10^k = \left(\sum_{k=0}^{n} 10^k \right) + 10^{n+1} < 10^n + 10^{n+1} = 2 \cdot 10^n + 10^{n+1} = 10^{n+2}.
\]

We have thus obtained the statement for \(n + 1 \). Note that in the above equation, the first inequality uses the induction hypothesis (the statement for \(n \)), \(\sum_{k=0}^{n} 10^k < 10^{n+1} \).