News & Events
Student Central

Summer REUs at Northeastern University and University of Puerto Rico Mayagüez July 28, 2017

July 28, 2017

This summer, ALERT is hosting three undergraduate students to participate in the 10-week Research Experience for Undergraduates (REU) program at Northeastern University. Nikhil Phatak (Computer Engineering & Computer Science ’20), Daniel Castle (Electrical Engineering ’21), and Jacob Londa (Computer Engineering ’21) are working with Prof. Carey Rappaport and graduate student mentor, Mohammad Nemati on the Advanced Imaging Technology (AIT) project. ALERT is also hosting two REU students at the University of Puerto Rico Mayagüez.

At the end of the summer, students will give a short video presentation on their research project, which will be featured on ALERT’s website. The video presentations will consist of a brief overview of each student’s research project, the project’s overall mission and activities, their specific contributions to the project, and knowledge and skills gained.

The program is hosted and sponsored by the Awareness and Localization of Explosives-Related Threats (ALERT) Department of Homeland Security Center of Excellence, and the Bernard M. Gordon Center for Subsurface Sensing and Imaging Systems (Gordon-CenSSIS), a Graduated National Science Foundation Engineering Research Center.

ADSA16 Presentations Now Available June 20, 2017

We are pleased to announce that the presentations from The Sixteenth Advanced Development for Security Applications Workshop (ADSA16) which was held on May 2-3, 2017 at Northeastern University in Boston, MA are now available for download.

The title of the workshop was, “Addressing the Requirement for Different Stakeholders in Transportation Security.” View all slides, as well as the reports from past ADSA workshops here.

If you have any questions regarding the topics and technologies discussed at the workshop, please contact ALERT at alert-info@coe.neu.edu.

ALERT Launches Video Analytics Lab at Kostas Research Institute May 30, 2017

A Better Testing Facility for Solving Real World Problems

Northeastern University’s George J. Kostas Research Institute for Homeland Security is now home to ALERT’s new Video Analytics Laboratory. Providing secure access, 1225 sq. feet of open space, controlled lighting conditions, and a fully networked and flexible camera grid, ALERT can better investigate and develop video and sensor technologies to address the needs of the Homeland Security Enterprise.

Using Video Technologies to Improve Passenger Experience

The first research project to leverage the lab is entitled Research and Development of Systems for Tracking Passengers and Divested Items at the Checkpoint. Funded by the Department of Homeland Security, this project is known by the acronym CLASP (Correlating Luggage and Specific Passengers) and leverages the technical expertise of ALERT research teams from Boston University, Marquette University, Northeastern University, Purdue University, and Rensselaer Polytechnic Institute. These teams will work towards developing an automated system capable of tracking passengers and divested items at airport security checkpoints.

CLASP will primarily focus on using video technologies to assist the Transportation Security Administration (TSA) in effectively identifying security incidents like theft of items, or bags left behind at the checkpoint. By automating and improving the technologies associated with these objectives, ALERT hopes to improve rates of detection and at the same time improve the passenger experience.

CLASP was the result of DHS’s interest in initial work done by ALERT Project Investigator Richard Radke’s lab. A video of their work can be seen below:

(Z. Wu and R.J. Radke, Real-Time Airport Security Checkpoint Surveillance Using a Camera Network. Workshop on Camera Networks and Wide Area Scene Analysis, in conjunction with CVPR 2011, June 2011.).

Government & Industry Partners Make the Difference

In order to deliver the system outlined in CLASP, the researchers working on the project require access to video data displaying real-world checkpoint security situations. Actual airport security video is generally restricted, so ALERT partnered with Massport, the Transportation Security Administration at Boston Logan International Airport, and industrial partners such as Rapiscan Systems to create an accurate representation of an airport security checkpoint in the ALERT Video Analytics Laboratory. This full-scale, mock airport security checkpoint uses the same hardware and design specifications currently used by the TSA at airports such as Logan, and gives ALERT a space to generate usable video data for this project and hopefully to the video analytics research community as a whole.

CLASP is just the beginning of work that can be done in this new laboratory and ALERT is hoping to leverage it for additional homeland security-related projects going forward. If you are interested in partnering with ALERT on future projects, please connect with us via email at alert-info@coe.neu.edu.

Kurt Jaisle Selected as Finalist in IEEE AP-S Student Paper Competition May 30, 2017

ALERT Student and Northeastern University Scholar, Kurt Jaisle has been selected as a finalist in the 2017 IEEE Antennas and Propagation Symposium’s (AP-S) Student Paper Competition for his paper, “Ray-Based Reconstruction Algorithm for Multi-Monostatic Radar in Imaging Systems.” Being selected as a finalist is quite an accomplishment, as each paper submitted to the IEEE AP-S Student Paper Competition undergoes three independent reviews from experts in the student’s field of study. Kurt’s submission was selected out of 159 papers, most of which were submitted by doctoral students. Kurt is a third year undergraduate student majoring in Electrical Engineering and conducts ALERT research with Professor Carey Rappaport on the R3 Research Thrust (Bulk Sensors & Sensor Systems).

The topic of Kurt’s paper is relevant to aviation security within the Homeland Security Enterprise. According to Kurt, “Today’s airport security scanners use very computationally demanding algorithms to process sensor data into an image of a passenger. As a result, these scanners require expensive, high-performance computers to complete the algorithms in a reasonable amount of time.  Yet even with these powerful machines, it can still take several seconds for a scan to be processed.” In his paper, Kurt details a new algorithm that would result in significantly faster processing times (resulting in shorter lines at airport security checkpoints) and a reduction in the cost of the computer hardware used in scanners, potentially making the technology more accessible for broader security applications.

Under the guidance of Professor Rappaport, Kurt began coding the algorithm in the fall of 2015. Over the course of a year, Kurt brought the algorithm from a rudimentary 2D simulation to a functional 3D simulation worthy of publication. Reflecting on his experience conducting research with Professor Rappaport, Kurt states, “Aside from a great deal of technical knowledge, I think the most important thing I have learned from Professor Rappaport is to not leave an endeavor half-finished. Even when I was stuck on a technical challenge for weeks at a time, he would remind me that progress in research is non-linear and that it was worth seeing it through so that I could eventually share my work with the broader community.

Kurt’s interest in engineering was sparked during middle school, when he became involved in FIRST Robotics, a program that aims to develop young STEM leaders through robotics competitions. As time passed, Kurt became interested in the electrical side of engineering and decided to study Electrical Engineering at Northeastern University. After graduation, Kurt plans to pursue a master’s degree in the context of analog electronics, and is hoping that his upper level Electrical Engineering courses, co-op opportunities, and research experiences will help him choose a specific topic of study.

Kurt will present on his selected paper at the IEEE AP-S Symposium in San Diego, California in July. The Student Paper Competition Committee Chair will announce the first, second, and third place winners at the IEEE A-PS Symposium’s Annual Awards Ceremony.

ALERT & Gordon-CenSSIS Scholars Delivered Final Presentations May 30, 2017

May, 2017

This year, ALERT and Gordon-CenSSIS had the honor of hosting 15 freshmen engineering students as participants in the ALERT and Gordon-CenSSIS Scholars Program.

After two semesters of active involvement in the program — which includes participation in an ALERT or Gordon-CenSSIS research project, K-12 STEM outreach, and Scholar meetings, seminars and activities — they completed the program on Wednesday, April 12, 2017, when they presented their final research presentations to their faculty advisors and other members of the Scholars community. The final presentations consisted of a 2-minute “elevator speech” from each student, which provided an overview of their research project’s overall mission and activities, their specific contributions to the project, as well as a description of the knowledge and skills they gained.

The ALERT and Gordon-CenSSIS Scholars Program is designed to provide freshmen engineers with the opportunity to get involved in research and STEM outreach, but also focuses on building their professional development. Throughout the year, Scholars attended seminars on Public Speaking Skills, Research Ethics, Lab Safety and Research Poster Building Skills.

ASPIRE 2017: Bringing Students, Faculty, Industry, and Government Together March 31, 2017

The Annual Student Pipeline Industry Roundtable Event (ASPIRE) was held on Thursday, March 16, 2017 at Northeastern University, Boston. Each year, ASPIRE, which is hosted by ALERT (Awareness and Localization of Explosives-Related Threats) and Gordon-CenSSIS (The Bernard M. Gordon Center for Subsurface Sensing and Imaging Systems), brings together members of the academic, industrial, and government communities to engage in dialogue, and provides networking opportunities for ALERT and Gordon-CenSSIS students looking for internships, co-op opportunities, and employment.

Participants at ASPIRE 2017 included industry representatives from American Science and Engineering/Rapiscan Systems, Analog Devices, Hamamatsu Photonics, HXI, and Morpho Detection; government representatives from the Department of Homeland Security, U.S. Coast Guard, U.S. Customs and Border Protection, and the Transportation Security Laboratory (TSL); and ALERT-affiliated graduate students from Boston University, Duke University, Northeastern University, Purdue University, Texas Tech University, and University of Puerto Rico Mayagüez.

The event started off in the early afternoon with welcoming remarks from Dr. Carey Rappaport (ALERT Deputy Director, ALERT Research Thrust Leader for R3 Bulk Sensors and Sensor Systems, and Electrical and Computer Engineering professor at Northeastern University), followed by industry and government introductions delivered by Emel Bulat (ALERT Senior Consultant for Corporate and Government Partnerships). Afterward, industry and government members gave 8-minute presentations on their organizations, research needs, and job openings. In the late afternoon, Dr. Hanumant Singh (Electrical and Computer Engineering, and Mechanical and Industrial Engineering professor at Northeastern University) delivered the keynote talk: “Autonomous Surface Vessels: High Resolution Mapping for Change Detection Spatially and Temporally.” This was followed by two separate roundtable networking sessions, in which representatives from industry and government met one-on-one with students, as well as with each other.

On the morning of the event, ALERT was pleased to welcome Brian Dolph of the U.S. Coast Guard and Chris Mocella of U.S. Customs and Border Protection to the laboratories of ALERT researchers, Dr. Octavia Camps, Dr. Jose-Martinez-Lorenzo, Dr. Carey Rappaport, and Dr. Matteo Rinaldi in order to showcase their research and its relevance to the Homeland Security Enterprise.

Check Out Our Latest ALERT 101 Video March 31, 2017

ALERT 101: The Basics – Atoms and Molecules

The prequel to ALERT 101 – Methods of Chemical Characterization and Mitigation, ALERT 101 – The Basics: Atoms and Molecules, provides an introduction to atoms and molecules. This video describes the structure of atoms, basic behaviors and properties of atoms, and how atoms bond to form molecules. Different methods of molecule identification are also discussed.

For users without YouTube access: ALERT 101 – The Basics: Atoms and Molecules

Inspired by the success of TED (www.ted.com) and other educational media forums, ALERT has developed the ALERT 101 video series. Each video short features different technologies and research areas that the ALERT Center engages in. We hope that these productions help educate and inform the global community on these topics in an accessible and enjoyable way

This material is based upon work supported by the U.S. Department of Homeland Security, Science and Technology Directorate, Office of University Programs, under Grant Award 2013-ST-061-ED0001. The views and conclusions contained in this video are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.

Professor Jose Martinez-Lorenzo Awarded $500K NSF CAREER Award March 6, 2017

ALERT Thrust R3 Project Investigator, Professor Jose Martinez-Lorenzo of Northeastern University was recently awarded a $500K National Science Foundation (NSF) CAREER Award for his work on developing a method for “4D mm-Wave Compressive Sensing and Imaging at One Thousand Volumetric Frames per Second.” Millimeter-wave sensing and imaging systems are generally used for a wide range of applications, such as security monitoring to detect potential threats at the airport and biological imaging for wound diagnosis and healing. Because this is the first four-dimensional millimeter-wave imaging system that can operate in quick-changing scenarios, it will benefit society greatly.

One of the main applications of this system is finding security threats hidden under clothing, inside backpacks, or in public spaces, such as sports arenas. The system can scan multiple people within 26 cubic meters and produce 1000 3D image frames per second. This far surpasses existing millimeter-wave sensing and imaging systems.

Despite the efficiency of this system, there are still some challenges to overcome. This project will look to address these challenges and ideally, the results of this research will establish the scientific basis for the proposed new sensing and imaging systems, by enhancing the imaging performance, reliability, and efficiency while reducing the hardware complexity, overall cost, and energy consumption of the system.

Additionally, Professor Martinez-Lorenzo will develop an educational program that combines classroom learning with research training methods to help students understand the principles and limitations of wave-based imaging. This educational program will also collaborate with the Northeastern University Cooperative Education and Career Development Program to transition students into industry and the Northeastern University Center for STEM Education to provide valuable research experiences for K-12, undergraduate, and underrepresented students, as well as education through online materials and public venues.

ALERT’s Methods to Improve the Detection of Hidden Explosives Wins Patent March 3, 2017

ALERT researchers, Prof. Carey Rappaport and Prof. Jose Martinez-Lorenzo of Northeastern University were awarded a patent for “Signal Processing Methods and Systems for Explosives Detection and Identification Using Electromagnetic Radiation” (U.S. Patent 9,575,045) on February 21, 2017.

This patent is for an algorithm designed to rule out non-explosive concealed foreign objects affixed to the skin (i.e. hidden under clothing). Current security screening systems, such as AIT Millimeter Wave Scanners used at airports to scan passengers, are able to identify items with distinct shapes that are hidden on the body, such as guns and knives. However, explosives are considerably more difficult to identify in this manner, due to the fact that the size and shape of explosives can vary greatly, leading to time-consuming and potentially dangerous security pat-downs to determine if a suspicious object is a security threat, or a wallet that a passenger forgot to place in the bin.

Prof. Rappaport and Prof. Martinez-Lorenzo believe their algorithm, when plugged into existing screening systems, will greatly reduce the number of false alarms, and thus, the number of pat-downs needed, leading to greater accuracy in threat detection and shorter security lines. The improved reliability would benefit many: passengers, airlines, and the Transportation Security Administration; and possibly lead to the expansion of AIT Millimeter Wave Scanners into everyday use, such as railway stations, sporting venues, and other soft targets.

Image caption: Simulation of a human form with explosives slab affixed to chest. 

ALERT and Gordon-CenSSIS Scholars Participate in Presentation Skills Seminar February 10, 2017

On February 1st 2017, the ALERT and Gordon-CenSSIS Scholars participated in a Presentation Skills Seminar. The ALERT and Gordon-CenSSIS Scholars Program is designed to provide freshman engineering students with opportunities to participate in research projects, STEM outreach, and professional development training. At the seminar, the Scholars discussed introductory presentation skills, with a particular focus on PowerPoint. This seminar is one of many regular meetings the Scholars will attend to improve upon their general leadership and research skills.