Development of Simulants of Hydrogen Peroxide Based Explosives for use by Canine and IMS Detectors

Mimy Young, Wen Fan, Howard Holness and José Almirall
International Forensic Research Institute, Florida International University, Miami, FL, 33199

Abstract

The objective of this project is to further technology transfer, validate and test the use of a Planar Solid Phase Microextraction (PSPME) device for the rapid extraction and concentration of volatiles from peroxide based explosives using an Ion Mobility Spectrometer (IMS). Our results show that 10 milligrams of TATP can be detected in as little as 10 seconds of static extraction or 5 seconds following dynamic headspace extraction from an enclosed space with PSME. The dynamic extraction was achieved with a commercial sampling system and the airflow collected and pre-concentrated on the newly developed PSPME device. The detection of the extracted volatiles was accomplished by two commonly used commercial ion mobility spectrometer units GE and Smith's detection, without any modification required to the units themselves. This presentation highlights the application and transfer of the PSPME technology to the real-world detection of TATP by the same ion Mobility Spectrometry units currently deployed at security checkpoints nationwide.

Relevance

Improve the knowledge base for the composition of headspace volatiles from peroxide explosives so that these analytes can be targeted for detection by a number of methods (PSPME-IMS and canines).

Technical Approach

1. Characterization of volatiles composed in the headspace of a number of different peroxides.
2. Determined the limits of detection and optimal parameters for the use of PSPME-IMS for the detection of peroxide explosives.
3. Begin to evaluate inexpensive permeation devices that can be used to deliver simulants to be used for canine training aids and instrumentation testing.

Accomplishments Through Current Year

Dynamic PSPME sampling at different distances (top) followed by detection using commercial IMS (Smiths IONSCAN-LS).

Opportunities for Transition to Customer

The NUI has funded the development and optimization of a PSPME device for rapid extraction and concentration of volatiles from MDMA tablets and smokeless powders. This proposed project aims to apply PSPME in the detection of peroxide-based explosives for field use.

Future Work

Target additional peroxide based explosives and improve the performance of the existing PSPME device and suggest guidelines for both training of canines with new simulants kits and the use of PSPME-IMS in field detection of peroxide-based explosives at checkpoints.

Patent Submissions

1. Improvement to SPME-IMS for Detection of Explosives and Drugs using Planar Geometry Fabricated SPME devices (patent pending).

Other References

5. Vikka Marijana Rasane; Marijana Nostkainen; Kaleva Peirakko; Miika Silvanpas, Lauri Polari; Osmo Anttilainen; Miika Utriainen, Analytica Chimica Acta 2008, 673, 59-65.

Plasmagrams of TATP using 10 mg of solid TATP detected by GE Itemizer (top) and 0.5 µg of liquid standard TATP detected by Smiths IONSCAN-LS (bottom).