Bringing Particle Scale Properties into Descriptions of Industrial Powder Behavior via the Enhanced Centrifuge Method

Caralyn A. Coultas-McKenney, Stephen P. Beaudoin

Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
coultas@purdue.edu

Impact

Powder adhesion plays a significant role in many industries. The force of adhesion between particles is dependent on the topography, shape, mechanical properties, and composition of the individual particles. Better design of powder processes and processing equipment will be enabled by a better understanding of particulate adhesion.

Addressing the Challenge: Powder Adhesion

The Challenge: Computational models and simulations that describe powder behavior lack in their ability to describe the adhesion across large numbers of unique particles.

The Desired Solution: A rapid, inexpensive, easily reproduced method to quantify particulate adhesion.

Prior State of the Art: The centrifuge method has been applied in classical adhesion studies to describe powder adhesion. It determines an average adhesion force for powders. The Enhanced Centrifuge Method attempts to quantify the effects of the individual particle properties in a more comprehensive way than this classic approach.

Impact: With reliable estimates of the relative adhesion forces of all particles within a powder, industrial partners can optimize:
1) equipment and process design, and
2) powder composition and morphology to minimize uncontrolled adhesion.

Centrifuge Method

Experimental

With reliable estimates of the relative adhesion forces of all particles, the centrifuge method can be used to describe adhesion in systems of thousands of particles.

Algorithm for implementation:

Powder of interest \rightarrow Implement enhanced centrifuge method $
ightarrow$ Determine effective Hamaker constant distribution for powder

Implement optimal design towards powder technology

Design powder technology to enhance adhesion

Use closed form algebraic expression to predict adhesion force distribution

Acknowledgements:

This material is based upon work supported by the U.S. Department of Homeland Security, Science and Technology Directorate, Office of University Programs, under Grant Award 2013-ST-061-ED0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.

Conclusion and Future Work

Preliminary results suggest effective Hamaker constant distributions can be used to describe adhesion in systems of thousands of particles.

Current Work

Decouple particle effects from opposing surface effects:

$A'_{132} = A_{true} \times a$

$A_{true} =$ True Hamaker constant

$a =$ Correction factor

Limit 1

Limit 2

Simulation study via Particle Adhesion Simulator:

Particle

Polystyrene

Particle

Polystyrene

Ideal Powder

Polystyrene Powder

Adjusted Ideal Powder

Experimental Polystyrene Powder

Ideal Powder

(Models powder as a distribution of perfect spheres)

$F_{vdw} = \frac{A'_{132} \cdot R}{6 \cdot D^2}$

$A'_{132} =$ Effective Hamaker constant

$R =$ Radius of particle

$D =$ Separation distance

Percent Remaining (%) vs. RPM

Ideal Powder

Adjusted Ideal Powder

Experimental Polystyrene Powder

Particle Size (µm)

Effective Hamaker Constant, A'_{132} (µJ)

0 5000 10000 15000

0 10 20 30 40 50 60

0 50 100

-100

0

Percent Remaining (%) vs. RPM

$\alpha = f$ (particle properties)

$\alpha = f$ (surface properties)

$\alpha =$ Correction factor

$\alpha =$ Topography, shape, and size

$\alpha =$ Substrate topography

$A_{true} =$ True Hamaker constant

$A'_{132} =$ Effective Hamaker constant

$R =$ Radius of particle

$D =$ Separation distance

$F_{vdw} =$ Van der Waals force

0 5000 10000 15000

0 10 20 30 40 50 60

0 50 100

-100

0

Effective Hamaker Constant, A'_{132} (µJ)

Particle Size (µm)

Current Work

Decouple particle effects from opposing surface effects:

$A'_{132} = A_{true} \times a$

$A_{true} =$ True Hamaker constant

$a =$ Correction factor

$\alpha =$ Topography, shape, and size

$\alpha =$ Substrate topography

$A'_{132} =$ Effective Hamaker constant

$R =$ Radius of particle

$D =$ Separation distance

$F_{vdw} =$ Van der Waals force

0 5000 10000 15000

0 10 20 30 40 50 60

0 50 100

-100

0

Percent Remaining (%) vs. RPM

Ideal Powder

Adjusted Ideal Powder

Experimental Polystyrene Powder

Particle Size (µm)

Effective Hamaker Constant, A'_{132} (µJ)

0 5000 10000 15000

0 10 20 30 40 50 60

0 50 100

-100

0

Effective Hamaker Constant, A'_{132} (µJ)

Particle Size (µm)