next up previous
Next: The Coulomb (Thomas-Fermi) functional Up: Density Functional Theory Previous: Some considerations about exchange

Functionals and functional derivatives

Functionals are mappings from function spaces to real or complex numbers. A general representation for a function $F$ is

$\displaystyle F[g]$ $\textstyle =$ $\displaystyle F_0 + \int dx F_1(x) g(x)$ (131)
  $\textstyle +$ $\displaystyle \int dx_1 \int dx_2 F_2(x_1,x_2) g(x_1)g(x_2)$ (132)
  $\textstyle +$ $\displaystyle \int dx_1 \int dx_2 \int dx_3 F_3(x_2,x_2,x_3) g(x_1)g(x_2)g(x_3) + \cdots$ (133)

where the kernels $F_i$ are general functions.

Now let $g \rightarrow g+\Delta g$. To linear order in $\Delta g$ we obtain

$\displaystyle F[g+\Delta g]$ $\textstyle =$ $\displaystyle F[g] + \int dx F_1(x) \Delta g(x)$ (134)
  $\textstyle +$ $\displaystyle 2\int dx_1 \int dx F_2(x_1,x) g(x_1)\Delta g(x)$ (135)
  $\textstyle +$ $\displaystyle 3\int dx_1 \int dx_2 \int dx F_3(x_1,x_2,x)g(x_1)g(x_2)\Delta g(x) + \cdots$ (136)

where we have assumed that the functions $F_i$ are symmetric functions of their arguments.

We can rewrite this equation as

\begin{displaymath}
F[g+\Delta g] = f[g] + \int dx \frac {\delta F[g]}{\delta g(x)} \Delta g(x)
\end{displaymath} (137)

where
$\displaystyle \frac {\delta F[g]}{\delta g(x)}$ $\textstyle =$ $\displaystyle F_1(x) + 2 \int dx_1 F_2(x_1,x) g(x_1)$ (138)
  $\textstyle +$ $\displaystyle 3\int dx_1 \int dx_2 F_3(x_1,x_2,x)g(x_1)g(x_2) + \cdots$ (139)

In analogy, we find
$\displaystyle \frac {\delta^2 F[g]}{\delta g(x)\delta g(x')}$ $\textstyle =$ $\displaystyle 2 F_2(x,x')
+ 3\int dx_1 F_3(x_1,x,x')g(x_1) + \cdots$ (140)


next up previous
Next: The Coulomb (Thomas-Fermi) functional Up: Density Functional Theory Previous: Some considerations about exchange
Adrian E. Feiguin 2009-11-04